1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
/**
@file g3dmath.cpp
@author Morgan McGuire, graphics3d.com
@created 2001-06-02
@edited 2004-02-24
*/
#include "G3D/g3dmath.h"
#include <cstdlib>
#include <cstring>
namespace G3D {
float gaussRandom(float mean, float stdev) {
// Using Box-Mueller method from http://www.taygeta.com/random/gaussian.html
// Modified to specify standard deviation and mean of distribution
float w, x1, x2;
// Loop until w is less than 1 so that log(w) is negative
do {
x1 = uniformRandom(-1.0, 1.0);
x2 = uniformRandom(-1.0, 1.0);
w = float(square(x1) + square(x2));
} while (w > 1.0f);
// Transform to gassian distribution
// Multiply by sigma (stdev ^ 2) and add mean.
return x2 * (float)square(stdev) * sqrtf((-2.0f * logf(w) ) / w) + mean;
}
/**
This value should not be tested against directly, instead
G3D::isNan() and G3D::isFinite() will return reliable results. */
double inf() {
return std::numeric_limits<double>::infinity();
}
bool isNaN(float x) {
static const float n = nan();
return memcmp(&x, &n, sizeof(float)) == 0;
}
bool isNaN(double x) {
static const double n = nan();
return memcmp(&x, &n, sizeof(double)) == 0;
}
/**
This value should not be tested against directly, instead
G3D::isNan() and G3D::isFinite() will return reliable results. */
float finf() {
return std::numeric_limits<float>::infinity();
}
/** This value should not be tested against directly, instead
G3D::isNan() and G3D::isFinite() will return reliable results. */
double nan() {
// double is a standard type and should have quiet NaN
return std::numeric_limits<double>::quiet_NaN();
}
float fnan() {
// double is a standard type and should have quiet NaN
return std::numeric_limits<float>::quiet_NaN();
}
int highestBit(uint32 x) {
// Binary search.
int base = 0;
if (x & 0xffff0000) {
base = 16;
x >>= 16;
}
if (x & 0x0000ff00) {
base += 8;
x >>= 8;
}
if (x & 0x000000f0) {
base += 4;
x >>= 4;
}
static const int lut[] = {-1,0,1,1,2,2,2,2,3,3,3,3,3,3,3,3};
return base + lut[x];
}
int iRandom(int low, int high) {
int r = iFloor(low + (high - low + 1) * (double)rand() / RAND_MAX);
// There is a *very small* chance of generating
// a number larger than high.
if (r > high) {
return high;
} else {
return r;
}
}
}
|