1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
/*
* Copyright (C) 2008-2011 TrinityCore <http://www.trinitycore.org/>
* Copyright (C) 2005-2010 MaNGOS <http://getmangos.com/>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "BoundingIntervalHierarchy.h"
void BIH::buildHierarchy(std::vector<uint32> &tempTree, buildData &dat, BuildStats &stats)
{
// create space for the first node
tempTree.push_back(uint32(3 << 30)); // dummy leaf
tempTree.insert(tempTree.end(), 2, 0);
//tempTree.add(0);
// seed bbox
AABound gridBox = { bounds.low(), bounds.high() };
AABound nodeBox = gridBox;
// seed subdivide function
subdivide(0, dat.numPrims - 1, tempTree, dat, gridBox, nodeBox, 0, 1, stats);
}
void BIH::subdivide(int left, int right, std::vector<uint32> &tempTree, buildData &dat, AABound &gridBox, AABound &nodeBox, int nodeIndex, int depth, BuildStats &stats)
{
if ((right - left + 1) <= dat.maxPrims || depth >= MAX_STACK_SIZE)
{
// write leaf node
stats.updateLeaf(depth, right - left + 1);
createNode(tempTree, nodeIndex, left, right);
return;
}
// calculate extents
int axis = -1, prevAxis, rightOrig;
float clipL = G3D::fnan(), clipR = G3D::fnan(), prevClip = G3D::fnan();
float split = G3D::fnan(), prevSplit;
bool wasLeft = true;
while (true)
{
prevAxis = axis;
prevSplit = split;
// perform quick consistency checks
Vector3 d( gridBox.hi - gridBox.lo );
if (d.x < 0 || d.y < 0 || d.z < 0)
throw std::logic_error("negative node extents");
for (int i = 0; i < 3; i++)
{
if (nodeBox.hi[i] < gridBox.lo[i] || nodeBox.lo[i] > gridBox.hi[i])
{
//UI.printError(Module.ACCEL, "Reached tree area in error - discarding node with: %d objects", right - left + 1);
throw std::logic_error("invalid node overlap");
}
}
// find longest axis
axis = d.primaryAxis();
split = 0.5f * (gridBox.lo[axis] + gridBox.hi[axis]);
// partition L/R subsets
clipL = -G3D::inf();
clipR = G3D::inf();
rightOrig = right; // save this for later
float nodeL = G3D::inf();
float nodeR = -G3D::inf();
for (int i = left; i <= right;)
{
int obj = dat.indices[i];
float minb = dat.primBound[obj].low()[axis];
float maxb = dat.primBound[obj].high()[axis];
float center = (minb + maxb) * 0.5f;
if (center <= split)
{
// stay left
i++;
if (clipL < maxb)
clipL = maxb;
}
else
{
// move to the right most
int t = dat.indices[i];
dat.indices[i] = dat.indices[right];
dat.indices[right] = t;
right--;
if (clipR > minb)
clipR = minb;
}
nodeL = std::min(nodeL, minb);
nodeR = std::max(nodeR, maxb);
}
// check for empty space
if (nodeL > nodeBox.lo[axis] && nodeR < nodeBox.hi[axis])
{
float nodeBoxW = nodeBox.hi[axis] - nodeBox.lo[axis];
float nodeNewW = nodeR - nodeL;
// node box is too big compare to space occupied by primitives?
if (1.3f * nodeNewW < nodeBoxW)
{
stats.updateBVH2();
int nextIndex = tempTree.size();
// allocate child
tempTree.push_back(0);
tempTree.push_back(0);
tempTree.push_back(0);
// write bvh2 clip node
stats.updateInner();
tempTree[nodeIndex + 0] = (axis << 30) | (1 << 29) | nextIndex;
tempTree[nodeIndex + 1] = floatToRawIntBits(nodeL);
tempTree[nodeIndex + 2] = floatToRawIntBits(nodeR);
// update nodebox and recurse
nodeBox.lo[axis] = nodeL;
nodeBox.hi[axis] = nodeR;
subdivide(left, rightOrig, tempTree, dat, gridBox, nodeBox, nextIndex, depth + 1, stats);
return;
}
}
// ensure we are making progress in the subdivision
if (right == rightOrig)
{
// all left
if (prevAxis == axis && G3D::fuzzyEq(prevSplit, split)) {
// we are stuck here - create a leaf
stats.updateLeaf(depth, right - left + 1);
createNode(tempTree, nodeIndex, left, right);
return;
}
if (clipL <= split) {
// keep looping on left half
gridBox.hi[axis] = split;
prevClip = clipL;
wasLeft = true;
continue;
}
gridBox.hi[axis] = split;
prevClip = G3D::fnan();
}
else if (left > right)
{
// all right
if (prevAxis == axis && G3D::fuzzyEq(prevSplit, split)) {
// we are stuck here - create a leaf
stats.updateLeaf(depth, right - left + 1);
createNode(tempTree, nodeIndex, left, right);
return;
}
right = rightOrig;
if (clipR >= split) {
// keep looping on right half
gridBox.lo[axis] = split;
prevClip = clipR;
wasLeft = false;
continue;
}
gridBox.lo[axis] = split;
prevClip = G3D::fnan();
}
else
{
// we are actually splitting stuff
if (prevAxis != -1 && !isnan(prevClip))
{
// second time through - lets create the previous split
// since it produced empty space
int nextIndex = tempTree.size();
// allocate child node
tempTree.push_back(0);
tempTree.push_back(0);
tempTree.push_back(0);
if (wasLeft) {
// create a node with a left child
// write leaf node
stats.updateInner();
tempTree[nodeIndex + 0] = (prevAxis << 30) | nextIndex;
tempTree[nodeIndex + 1] = floatToRawIntBits(prevClip);
tempTree[nodeIndex + 2] = floatToRawIntBits(G3D::inf());
} else {
// create a node with a right child
// write leaf node
stats.updateInner();
tempTree[nodeIndex + 0] = (prevAxis << 30) | (nextIndex - 3);
tempTree[nodeIndex + 1] = floatToRawIntBits(-G3D::inf());
tempTree[nodeIndex + 2] = floatToRawIntBits(prevClip);
}
// count stats for the unused leaf
depth++;
stats.updateLeaf(depth, 0);
// now we keep going as we are, with a new nodeIndex:
nodeIndex = nextIndex;
}
break;
}
}
// compute index of child nodes
int nextIndex = tempTree.size();
// allocate left node
int nl = right - left + 1;
int nr = rightOrig - (right + 1) + 1;
if (nl > 0) {
tempTree.push_back(0);
tempTree.push_back(0);
tempTree.push_back(0);
} else
nextIndex -= 3;
// allocate right node
if (nr > 0) {
tempTree.push_back(0);
tempTree.push_back(0);
tempTree.push_back(0);
}
// write leaf node
stats.updateInner();
tempTree[nodeIndex + 0] = (axis << 30) | nextIndex;
tempTree[nodeIndex + 1] = floatToRawIntBits(clipL);
tempTree[nodeIndex + 2] = floatToRawIntBits(clipR);
// prepare L/R child boxes
AABound gridBoxL(gridBox), gridBoxR(gridBox);
AABound nodeBoxL(nodeBox), nodeBoxR(nodeBox);
gridBoxL.hi[axis] = gridBoxR.lo[axis] = split;
nodeBoxL.hi[axis] = clipL;
nodeBoxR.lo[axis] = clipR;
// recurse
if (nl > 0)
subdivide(left, right, tempTree, dat, gridBoxL, nodeBoxL, nextIndex, depth + 1, stats);
else
stats.updateLeaf(depth + 1, 0);
if (nr > 0)
subdivide(right + 1, rightOrig, tempTree, dat, gridBoxR, nodeBoxR, nextIndex + 3, depth + 1, stats);
else
stats.updateLeaf(depth + 1, 0);
}
bool BIH::writeToFile(FILE *wf) const
{
uint32 treeSize = tree.size();
uint32 check=0, count=0;
check += fwrite(&bounds.low(), sizeof(float), 3, wf);
check += fwrite(&bounds.high(), sizeof(float), 3, wf);
check += fwrite(&treeSize, sizeof(uint32), 1, wf);
check += fwrite(&tree[0], sizeof(uint32), treeSize, wf);
count = objects.size();
check += fwrite(&count, sizeof(uint32), 1, wf);
check += fwrite(&objects[0], sizeof(uint32), count, wf);
return check == (3 + 3 + 2 + treeSize + count);
}
bool BIH::readFromFile(FILE *rf)
{
uint32 treeSize;
Vector3 lo, hi;
uint32 check=0, count=0;
check += fread(&lo, sizeof(float), 3, rf);
check += fread(&hi, sizeof(float), 3, rf);
bounds = AABox(lo, hi);
check += fread(&treeSize, sizeof(uint32), 1, rf);
tree.resize(treeSize);
check += fread(&tree[0], sizeof(uint32), treeSize, rf);
check += fread(&count, sizeof(uint32), 1, rf);
objects.resize(count); // = new uint32[nObjects];
check += fread(&objects[0], sizeof(uint32), count, rf);
return check == (3 + 3 + 2 + treeSize + count);
}
void BIH::BuildStats::updateLeaf(int depth, int n)
{
numLeaves++;
minDepth = std::min(depth, minDepth);
maxDepth = std::max(depth, maxDepth);
sumDepth += depth;
minObjects = std::min(n, minObjects);
maxObjects = std::max(n, maxObjects);
sumObjects += n;
int nl = std::min(n, 5);
++numLeavesN[nl];
}
void BIH::BuildStats::printStats()
{
printf("Tree stats:\n");
printf(" * Nodes: %d\n", numNodes);
printf(" * Leaves: %d\n", numLeaves);
printf(" * Objects: min %d\n", minObjects);
printf(" avg %.2f\n", (float) sumObjects / numLeaves);
printf(" avg(n>0) %.2f\n", (float) sumObjects / (numLeaves - numLeavesN[0]));
printf(" max %d\n", maxObjects);
printf(" * Depth: min %d\n", minDepth);
printf(" avg %.2f\n", (float) sumDepth / numLeaves);
printf(" max %d\n", maxDepth);
printf(" * Leaves w/: N=0 %3d%%\n", 100 * numLeavesN[0] / numLeaves);
printf(" N=1 %3d%%\n", 100 * numLeavesN[1] / numLeaves);
printf(" N=2 %3d%%\n", 100 * numLeavesN[2] / numLeaves);
printf(" N=3 %3d%%\n", 100 * numLeavesN[3] / numLeaves);
printf(" N=4 %3d%%\n", 100 * numLeavesN[4] / numLeaves);
printf(" N>4 %3d%%\n", 100 * numLeavesN[5] / numLeaves);
printf(" * BVH2 nodes: %d (%3d%%)\n", numBVH2, 100 * numBVH2 / (numNodes + numLeaves - 2 * numBVH2));
}
|