diff options
author | Kitzunu <24550914+Kitzunu@users.noreply.github.com> | 2024-11-24 14:45:46 +0100 |
---|---|---|
committer | GitHub <noreply@github.com> | 2024-11-24 14:45:46 +0100 |
commit | 4aa70c4dba765fa2715c3548db0e16fec19c3311 (patch) | |
tree | 6ac2b0d669b398f86efd026e16e46a142584b8dd /deps/mysqllite/strings/decimal.c | |
parent | 49b05967447559978dd92bbc3b619749cf1d5341 (diff) |
refactor(Deps/mysqllite): Nuke it (#20710)
* close https://github.com/azerothcore/azerothcore-wotlk/issues/20123
Diffstat (limited to 'deps/mysqllite/strings/decimal.c')
-rw-r--r-- | deps/mysqllite/strings/decimal.c | 3128 |
1 files changed, 0 insertions, 3128 deletions
diff --git a/deps/mysqllite/strings/decimal.c b/deps/mysqllite/strings/decimal.c deleted file mode 100644 index 762773f045..0000000000 --- a/deps/mysqllite/strings/decimal.c +++ /dev/null @@ -1,3128 +0,0 @@ -/* Copyright (C) 2000 MySQL AB - - This program is free software; you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation; version 2 of the License. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program; if not, write to the Free Software - Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ - -#line 18 "decimal.c" - -/* -======================================================================= - NOTE: this library implements SQL standard "exact numeric" type - and is not at all generic, but rather intentinally crippled to - follow the standard :) -======================================================================= - Quoting the standard - (SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003) - -4.4.2 Characteristics of numbers, page 27: - - An exact numeric type has a precision P and a scale S. P is a positive - integer that determines the number of significant digits in a - particular radix R, where R is either 2 or 10. S is a non-negative - integer. Every value of an exact numeric type of scale S is of the - form n*10^{-S}, where n is an integer such that �-R^P <= n <= R^P. - - [...] - - If an assignment of some number would result in a loss of its most - significant digit, an exception condition is raised. If least - significant digits are lost, implementation-defined rounding or - truncating occurs, with no exception condition being raised. - - [...] - - Whenever an exact or approximate numeric value is assigned to an exact - numeric value site, an approximation of its value that preserves - leading significant digits after rounding or truncating is represented - in the declared type of the target. The value is converted to have the - precision and scale of the target. The choice of whether to truncate - or round is implementation-defined. - - [...] - - All numeric values between the smallest and the largest value, - inclusive, in a given exact numeric type have an approximation - obtained by rounding or truncation for that type; it is - implementation-defined which other numeric values have such - approximations. - -5.3 <literal>, page 143 - - <exact numeric literal> ::= - <unsigned integer> [ <period> [ <unsigned integer> ] ] - | <period> <unsigned integer> - -6.1 <data type>, page 165: - - 19) The <scale> of an <exact numeric type> shall not be greater than - the <precision> of the <exact numeric type>. - - 20) For the <exact numeric type>s DECIMAL and NUMERIC: - - a) The maximum value of <precision> is implementation-defined. - <precision> shall not be greater than this value. - b) The maximum value of <scale> is implementation-defined. <scale> - shall not be greater than this maximum value. - - 21) NUMERIC specifies the data type exact numeric, with the decimal - precision and scale specified by the <precision> and <scale>. - - 22) DECIMAL specifies the data type exact numeric, with the decimal - scale specified by the <scale> and the implementation-defined - decimal precision equal to or greater than the value of the - specified <precision>. - -6.26 <numeric value expression>, page 241: - - 1) If the declared type of both operands of a dyadic arithmetic - operator is exact numeric, then the declared type of the result is - an implementation-defined exact numeric type, with precision and - scale determined as follows: - - a) Let S1 and S2 be the scale of the first and second operands - respectively. - b) The precision of the result of addition and subtraction is - implementation-defined, and the scale is the maximum of S1 and S2. - c) The precision of the result of multiplication is - implementation-defined, and the scale is S1 + S2. - d) The precision and scale of the result of division are - implementation-defined. -*/ - -#include <my_global.h> -#include <m_ctype.h> -#include <myisampack.h> -#include <my_sys.h> /* for my_alloca */ -#include <m_string.h> -#include <decimal.h> - -/* - Internally decimal numbers are stored base 10^9 (see DIG_BASE below) - So one variable of type decimal_digit_t is limited: - - 0 < decimal_digit <= DIG_MAX < DIG_BASE - - in the struct st_decimal_t: - - intg is the number of *decimal* digits (NOT number of decimal_digit_t's !) - before the point - frac - number of decimal digits after the point - buf is an array of decimal_digit_t's - len is the length of buf (length of allocated space) in decimal_digit_t's, - not in bytes -*/ -typedef decimal_digit_t dec1; -typedef longlong dec2; - -#define DIG_PER_DEC1 9 -#define DIG_MASK 100000000 -#define DIG_BASE 1000000000 -#define DIG_MAX (DIG_BASE-1) -#define DIG_BASE2 ((dec2)DIG_BASE * (dec2)DIG_BASE) -#define ROUND_UP(X) (((X)+DIG_PER_DEC1-1)/DIG_PER_DEC1) -static const dec1 powers10[DIG_PER_DEC1+1]={ - 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000}; -static const int dig2bytes[DIG_PER_DEC1+1]={0, 1, 1, 2, 2, 3, 3, 4, 4, 4}; -static const dec1 frac_max[DIG_PER_DEC1-1]={ - 900000000, 990000000, 999000000, - 999900000, 999990000, 999999000, - 999999900, 999999990 }; - -#ifdef HAVE_purify -#define sanity(d) DBUG_ASSERT((d)->len > 0) -#else -#define sanity(d) DBUG_ASSERT((d)->len >0 && ((d)->buf[0] | \ - (d)->buf[(d)->len-1] | 1)) -#endif - -#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \ - do \ - { \ - if (unlikely(intg1+frac1 > (len))) \ - { \ - if (unlikely(intg1 > (len))) \ - { \ - intg1=(len); \ - frac1=0; \ - error=E_DEC_OVERFLOW; \ - } \ - else \ - { \ - frac1=(len)-intg1; \ - error=E_DEC_TRUNCATED; \ - } \ - } \ - else \ - error=E_DEC_OK; \ - } while(0) - -#define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \ - do \ - { \ - dec1 a=(from1)+(from2)+(carry); \ - DBUG_ASSERT((carry) <= 1); \ - if (((carry)= a >= DIG_BASE)) /* no division here! */ \ - a-=DIG_BASE; \ - (to)=a; \ - } while(0) - -#define ADD2(to, from1, from2, carry) \ - do \ - { \ - dec2 a=((dec2)(from1))+(from2)+(carry); \ - if (((carry)= a >= DIG_BASE)) \ - a-=DIG_BASE; \ - if (unlikely(a >= DIG_BASE)) \ - { \ - a-=DIG_BASE; \ - carry++; \ - } \ - (to)=(dec1) a; \ - } while(0) - -#define SUB(to, from1, from2, carry) /* to=from1-from2 */ \ - do \ - { \ - dec1 a=(from1)-(from2)-(carry); \ - if (((carry)= a < 0)) \ - a+=DIG_BASE; \ - (to)=a; \ - } while(0) - -#define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \ - do \ - { \ - dec1 a=(from1)-(from2)-(carry); \ - if (((carry)= a < 0)) \ - a+=DIG_BASE; \ - if (unlikely(a < 0)) \ - { \ - a+=DIG_BASE; \ - carry++; \ - } \ - (to)=a; \ - } while(0) - -/* - Get maximum value for given precision and scale - - SYNOPSIS - max_decimal() - precision/scale - see decimal_bin_size() below - to - decimal where where the result will be stored - to->buf and to->len must be set. -*/ - -void max_decimal(int precision, int frac, decimal_t *to) -{ - int intpart; - dec1 *buf= to->buf; - DBUG_ASSERT(precision && precision >= frac); - - to->sign= 0; - if ((intpart= to->intg= (precision - frac))) - { - int firstdigits= intpart % DIG_PER_DEC1; - if (firstdigits) - *buf++= powers10[firstdigits] - 1; /* get 9 99 999 ... */ - for(intpart/= DIG_PER_DEC1; intpart; intpart--) - *buf++= DIG_MAX; - } - - if ((to->frac= frac)) - { - int lastdigits= frac % DIG_PER_DEC1; - for(frac/= DIG_PER_DEC1; frac; frac--) - *buf++= DIG_MAX; - if (lastdigits) - *buf= frac_max[lastdigits - 1]; - } -} - - -static dec1 *remove_leading_zeroes(decimal_t *from, int *intg_result) -{ - int intg= from->intg, i; - dec1 *buf0= from->buf; - i= ((intg - 1) % DIG_PER_DEC1) + 1; - while (intg > 0 && *buf0 == 0) - { - intg-= i; - i= DIG_PER_DEC1; - buf0++; - } - if (intg > 0) - { - for (i= (intg - 1) % DIG_PER_DEC1; *buf0 < powers10[i--]; intg--) ; - DBUG_ASSERT(intg > 0); - } - else - intg=0; - *intg_result= intg; - return buf0; -} - - -/* - Count actual length of fraction part (without ending zeroes) - - SYNOPSIS - decimal_actual_fraction() - from number for processing -*/ - -int decimal_actual_fraction(decimal_t *from) -{ - int frac= from->frac, i; - dec1 *buf0= from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1; - - if (frac == 0) - return 0; - - i= ((frac - 1) % DIG_PER_DEC1 + 1); - while (frac > 0 && *buf0 == 0) - { - frac-= i; - i= DIG_PER_DEC1; - buf0--; - } - if (frac > 0) - { - for (i= DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1); - *buf0 % powers10[i++] == 0; - frac--) ; - } - return frac; -} - - -/* - Convert decimal to its printable string representation - - SYNOPSIS - decimal2string() - from - value to convert - to - points to buffer where string representation - should be stored - *to_len - in: size of to buffer - out: length of the actually written string - fixed_precision - 0 if representation can be variable length and - fixed_decimals will not be checked in this case. - Put number as with fixed point position with this - number of digits (sign counted and decimal point is - counted) - fixed_decimals - number digits after point. - filler - character to fill gaps in case of fixed_precision > 0 - - RETURN VALUE - E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW -*/ - -int decimal2string(decimal_t *from, char *to, int *to_len, - int fixed_precision, int fixed_decimals, - char filler) -{ - int len, intg, frac= from->frac, i, intg_len, frac_len, fill; - /* number digits before decimal point */ - int fixed_intg= (fixed_precision ? - (fixed_precision - fixed_decimals) : 0); - int error=E_DEC_OK; - char *s=to; - dec1 *buf, *buf0=from->buf, tmp; - - DBUG_ASSERT(*to_len >= 2+from->sign); - - /* removing leading zeroes */ - buf0= remove_leading_zeroes(from, &intg); - if (unlikely(intg+frac==0)) - { - intg=1; - tmp=0; - buf0=&tmp; - } - - if (!(intg_len= fixed_precision ? fixed_intg : intg)) - intg_len= 1; - frac_len= fixed_precision ? fixed_decimals : frac; - len= from->sign + intg_len + test(frac) + frac_len; - if (fixed_precision) - { - if (frac > fixed_decimals) - { - error= E_DEC_TRUNCATED; - frac= fixed_decimals; - } - if (intg > fixed_intg) - { - error= E_DEC_OVERFLOW; - intg= fixed_intg; - } - } - else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */ - { - int j= len-*to_len; - error= (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW; - if (frac && j >= frac + 1) j--; - if (j > frac) - { - intg-= j-frac; - frac= 0; - } - else - frac-=j; - len= from->sign + intg_len + test(frac) + frac_len; - } - *to_len=len; - s[len]=0; - - if (from->sign) - *s++='-'; - - if (frac) - { - char *s1= s + intg_len; - fill= frac_len - frac; - buf=buf0+ROUND_UP(intg); - *s1++='.'; - for (; frac>0; frac-=DIG_PER_DEC1) - { - dec1 x=*buf++; - for (i=min(frac, DIG_PER_DEC1); i; i--) - { - dec1 y=x/DIG_MASK; - *s1++='0'+(uchar)y; - x-=y*DIG_MASK; - x*=10; - } - } - for(; fill; fill--) - *s1++=filler; - } - - fill= intg_len - intg; - if (intg == 0) - fill--; /* symbol 0 before digital point */ - for(; fill; fill--) - *s++=filler; - if (intg) - { - s+=intg; - for (buf=buf0+ROUND_UP(intg); intg>0; intg-=DIG_PER_DEC1) - { - dec1 x=*--buf; - for (i=min(intg, DIG_PER_DEC1); i; i--) - { - dec1 y=x/10; - *--s='0'+(uchar)(x-y*10); - x=y; - } - } - } - else - *s= '0'; - return error; -} - - -/* - Return bounds of decimal digits in the number - - SYNOPSIS - digits_bounds() - from - decimal number for processing - start_result - index (from 0 ) of first decimal digits will - be written by this address - end_result - index of position just after last decimal digit - be written by this address -*/ - -static void digits_bounds(decimal_t *from, int *start_result, int *end_result) -{ - int start, stop, i; - dec1 *buf_beg= from->buf; - dec1 *end= from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac); - dec1 *buf_end= end - 1; - - /* find non-zero digit from number begining */ - while (buf_beg < end && *buf_beg == 0) - buf_beg++; - - if (buf_beg >= end) - { - /* it is zero */ - *start_result= *end_result= 0; - return; - } - - /* find non-zero decimal digit from number begining */ - if (buf_beg == from->buf && from->intg) - { - start= DIG_PER_DEC1 - (i= ((from->intg-1) % DIG_PER_DEC1 + 1)); - i--; - } - else - { - i= DIG_PER_DEC1 - 1; - start= (int) ((buf_beg - from->buf) * DIG_PER_DEC1); - } - if (buf_beg < end) - for (; *buf_beg < powers10[i--]; start++) ; - *start_result= start; /* index of first decimal digit (from 0) */ - - /* find non-zero digit at the end */ - while (buf_end > buf_beg && *buf_end == 0) - buf_end--; - /* find non-zero decimal digit from the end */ - if (buf_end == end - 1 && from->frac) - { - stop= (int) (((buf_end - from->buf) * DIG_PER_DEC1 + - (i= ((from->frac - 1) % DIG_PER_DEC1 + 1)))); - i= DIG_PER_DEC1 - i + 1; - } - else - { - stop= (int) ((buf_end - from->buf + 1) * DIG_PER_DEC1); - i= 1; - } - for (; *buf_end % powers10[i++] == 0; stop--) ; - *end_result= stop; /* index of position after last decimal digit (from 0) */ -} - - -/* - Left shift for alignment of data in buffer - - SYNOPSIS - do_mini_left_shift() - dec pointer to decimal number which have to be shifted - shift number of decimal digits on which it should be shifted - beg/end bounds of decimal digits (see digits_bounds()) - - NOTE - Result fitting in the buffer should be garanted. - 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive) -*/ - -void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last) -{ - dec1 *from= dec->buf + ROUND_UP(beg + 1) - 1; - dec1 *end= dec->buf + ROUND_UP(last) - 1; - int c_shift= DIG_PER_DEC1 - shift; - DBUG_ASSERT(from >= dec->buf); - DBUG_ASSERT(end < dec->buf + dec->len); - if (beg % DIG_PER_DEC1 < shift) - *(from - 1)= (*from) / powers10[c_shift]; - for(; from < end; from++) - *from= ((*from % powers10[c_shift]) * powers10[shift] + - (*(from + 1)) / powers10[c_shift]); - *from= (*from % powers10[c_shift]) * powers10[shift]; -} - - -/* - Right shift for alignment of data in buffer - - SYNOPSIS - do_mini_left_shift() - dec pointer to decimal number which have to be shifted - shift number of decimal digits on which it should be shifted - beg/end bounds of decimal digits (see digits_bounds()) - - NOTE - Result fitting in the buffer should be garanted. - 'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive) -*/ - -void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last) -{ - dec1 *from= dec->buf + ROUND_UP(last) - 1; - dec1 *end= dec->buf + ROUND_UP(beg + 1) - 1; - int c_shift= DIG_PER_DEC1 - shift; - DBUG_ASSERT(from < dec->buf + dec->len); - DBUG_ASSERT(end >= dec->buf); - if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift) - *(from + 1)= (*from % powers10[shift]) * powers10[c_shift]; - for(; from > end; from--) - *from= (*from / powers10[shift] + - (*(from - 1) % powers10[shift]) * powers10[c_shift]); - *from= *from / powers10[shift]; -} - - -/* - Shift of decimal digits in given number (with rounding if it need) - - SYNOPSIS - decimal_shift() - dec number to be shifted - shift number of decimal positions - shift > 0 means shift to left shift - shift < 0 meand right shift - NOTE - In fact it is multipling on 10^shift. - RETURN - E_DEC_OK OK - E_DEC_OVERFLOW operation lead to overflow, number is untoched - E_DEC_TRUNCATED number was rounded to fit into buffer -*/ - -int decimal_shift(decimal_t *dec, int shift) -{ - /* index of first non zero digit (all indexes from 0) */ - int beg; - /* index of position after last decimal digit */ - int end; - /* index of digit position just after point */ - int point= ROUND_UP(dec->intg) * DIG_PER_DEC1; - /* new point position */ - int new_point= point + shift; - /* number of digits in result */ - int digits_int, digits_frac; - /* length of result and new fraction in big digits*/ - int new_len, new_frac_len; - /* return code */ - int err= E_DEC_OK; - int new_front; - - if (shift == 0) - return E_DEC_OK; - - digits_bounds(dec, &beg, &end); - - if (beg == end) - { - decimal_make_zero(dec); - return E_DEC_OK; - } - - digits_int= new_point - beg; - set_if_bigger(digits_int, 0); - digits_frac= end - new_point; - set_if_bigger(digits_frac, 0); - - if ((new_len= ROUND_UP(digits_int) + (new_frac_len= ROUND_UP(digits_frac))) > - dec->len) - { - int lack= new_len - dec->len; - int diff; - - if (new_frac_len < lack) - return E_DEC_OVERFLOW; /* lack more then we have in fraction */ - - /* cat off fraction part to allow new number to fit in our buffer */ - err= E_DEC_TRUNCATED; - new_frac_len-= lack; - diff= digits_frac - (new_frac_len * DIG_PER_DEC1); - /* Make rounding method as parameter? */ - decimal_round(dec, dec, end - point - diff, HALF_UP); - end-= diff; - digits_frac= new_frac_len * DIG_PER_DEC1; - - if (end <= beg) - { - /* - we lost all digits (they will be shifted out of buffer), so we can - just return 0 - */ - decimal_make_zero(dec); - return E_DEC_TRUNCATED; - } - } - - if (shift % DIG_PER_DEC1) - { - int l_mini_shift, r_mini_shift, mini_shift; - int do_left; - /* - Calculate left/right shift to align decimal digits inside our bug - digits correctly - */ - if (shift > 0) - { - l_mini_shift= shift % DIG_PER_DEC1; - r_mini_shift= DIG_PER_DEC1 - l_mini_shift; - /* - It is left shift so prefer left shift, but if we have not place from - left, we have to have it from right, because we checked length of - result - */ - do_left= l_mini_shift <= beg; - DBUG_ASSERT(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift); - } - else - { - r_mini_shift= (-shift) % DIG_PER_DEC1; - l_mini_shift= DIG_PER_DEC1 - r_mini_shift; - /* see comment above */ - do_left= !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift); - DBUG_ASSERT(!do_left || l_mini_shift <= beg); - } - if (do_left) - { - do_mini_left_shift(dec, l_mini_shift, beg, end); - mini_shift=- l_mini_shift; - } - else - { - do_mini_right_shift(dec, r_mini_shift, beg, end); - mini_shift= r_mini_shift; - } - new_point+= mini_shift; - /* - If number is shifted and correctly aligned in buffer we can - finish - */ - if (!(shift+= mini_shift) && (new_point - digits_int) < DIG_PER_DEC1) - { - dec->intg= digits_int; - dec->frac= digits_frac; - return err; /* already shifted as it should be */ - } - beg+= mini_shift; - end+= mini_shift; - } - - /* if new 'decimal front' is in first digit, we do not need move digits */ - if ((new_front= (new_point - digits_int)) >= DIG_PER_DEC1 || - new_front < 0) - { - /* need to move digits */ - int d_shift; - dec1 *to, *barier; - if (new_front > 0) - { - /* move left */ - d_shift= new_front / DIG_PER_DEC1; - to= dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift); - barier= dec->buf + (ROUND_UP(end) - 1 - d_shift); - DBUG_ASSERT(to >= dec->buf); - DBUG_ASSERT(barier + d_shift < dec->buf + dec->len); - for(; to <= barier; to++) - *to= *(to + d_shift); - for(barier+= d_shift; to <= barier; to++) - *to= 0; - d_shift= -d_shift; - } - else - { - /* move right */ - d_shift= (1 - new_front) / DIG_PER_DEC1; - to= dec->buf + ROUND_UP(end) - 1 + d_shift; - barier= dec->buf + ROUND_UP(beg + 1) - 1 + d_shift; - DBUG_ASSERT(to < dec->buf + dec->len); - DBUG_ASSERT(barier - d_shift >= dec->buf); - for(; to >= barier; to--) - *to= *(to - d_shift); - for(barier-= d_shift; to >= barier; to--) - *to= 0; - } - d_shift*= DIG_PER_DEC1; - beg+= d_shift; - end+= d_shift; - new_point+= d_shift; - } - - /* - If there are gaps then fill ren with 0. - - Only one of following 'for' loops will work becouse beg <= end - */ - beg= ROUND_UP(beg + 1) - 1; - end= ROUND_UP(end) - 1; - DBUG_ASSERT(new_point >= 0); - - /* We don't want negative new_point below */ - if (new_point != 0) - new_point= ROUND_UP(new_point) - 1; - - if (new_point > end) - { - do - { - dec->buf[new_point]=0; - } while (--new_point > end); - } - else - { - for (; new_point < beg; new_point++) - dec->buf[new_point]= 0; - } - dec->intg= digits_int; - dec->frac= digits_frac; - return err; -} - - -/* - Convert string to decimal - - SYNOPSIS - internal_str2decl() - from - value to convert. Doesn't have to be \0 terminated! - to - decimal where where the result will be stored - to->buf and to->len must be set. - end - Pointer to pointer to end of string. Will on return be - set to the char after the last used character - fixed - use to->intg, to->frac as limits for input number - - NOTE - to->intg and to->frac can be modified even when fixed=1 - (but only decreased, in this case) - - RETURN VALUE - E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM - In case of E_DEC_FATAL_ERROR *to is set to decimal zero - (to make error handling easier) -*/ - -int -internal_str2dec(const char *from, decimal_t *to, char **end, my_bool fixed) -{ - const char *s= from, *s1, *endp, *end_of_string= *end; - int i, intg, frac, error, intg1, frac1; - dec1 x,*buf; - sanity(to); - - error= E_DEC_BAD_NUM; /* In case of bad number */ - while (s < end_of_string && my_isspace(&my_charset_latin1, *s)) - s++; - if (s == end_of_string) - goto fatal_error; - - if ((to->sign= (*s == '-'))) - s++; - else if (*s == '+') - s++; - - s1=s; - while (s < end_of_string && my_isdigit(&my_charset_latin1, *s)) - s++; - intg= (int) (s-s1); - if (s < end_of_string && *s=='.') - { - endp= s+1; - while (endp < end_of_string && my_isdigit(&my_charset_latin1, *endp)) - endp++; - frac= (int) (endp - s - 1); - } - else - { - frac= 0; - endp= s; - } - - *end= (char*) endp; - - if (frac+intg == 0) - goto fatal_error; - - error= 0; - if (fixed) - { - if (frac > to->frac) - { - error=E_DEC_TRUNCATED; - frac=to->frac; - } - if (intg > to->intg) - { - error=E_DEC_OVERFLOW; - intg=to->intg; - } - intg1=ROUND_UP(intg); - frac1=ROUND_UP(frac); - if (intg1+frac1 > to->len) - { - error= E_DEC_OOM; - goto fatal_error; - } - } - else - { - intg1=ROUND_UP(intg); - frac1=ROUND_UP(frac); - FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); - if (unlikely(error)) - { - frac=frac1*DIG_PER_DEC1; - if (error == E_DEC_OVERFLOW) - intg=intg1*DIG_PER_DEC1; - } - } - /* Error is guranteed to be set here */ - to->intg=intg; - to->frac=frac; - - buf=to->buf+intg1; - s1=s; - - for (x=0, i=0; intg; intg--) - { - x+= (*--s - '0')*powers10[i]; - - if (unlikely(++i == DIG_PER_DEC1)) - { - *--buf=x; - x=0; - i=0; - } - } - if (i) - *--buf=x; - - buf=to->buf+intg1; - for (x=0, i=0; frac; frac--) - { - x= (*++s1 - '0') + x*10; - - if (unlikely(++i == DIG_PER_DEC1)) - { - *buf++=x; - x=0; - i=0; - } - } - if (i) - *buf=x*powers10[DIG_PER_DEC1-i]; - - /* Handle exponent */ - if (endp+1 < end_of_string && (*endp == 'e' || *endp == 'E')) - { - int str_error; - longlong exponent= my_strtoll10(endp+1, (char**) &end_of_string, - &str_error); - - if (end_of_string != endp +1) /* If at least one digit */ - { - *end= (char*) end_of_string; - if (str_error > 0) - { - error= E_DEC_BAD_NUM; - goto fatal_error; - } - if (exponent > INT_MAX/2 || (str_error == 0 && exponent < 0)) - { - error= E_DEC_OVERFLOW; - goto fatal_error; - } - if (exponent < INT_MIN/2 && error != E_DEC_OVERFLOW) - { - error= E_DEC_TRUNCATED; - goto fatal_error; - } - if (error != E_DEC_OVERFLOW) - error= decimal_shift(to, (int) exponent); - } - } - return error; - -fatal_error: - decimal_make_zero(to); - return error; -} - - -/* - Convert decimal to double - - SYNOPSIS - decimal2double() - from - value to convert - to - result will be stored there - - RETURN VALUE - E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED -*/ - -int decimal2double(decimal_t *from, double *to) -{ - char strbuf[FLOATING_POINT_BUFFER], *end; - int len= sizeof(strbuf); - int rc, error; - - rc = decimal2string(from, strbuf, &len, 0, 0, 0); - end= strbuf + len; - - DBUG_PRINT("info", ("interm.: %s", strbuf)); - - *to= my_strtod(strbuf, &end, &error); - - DBUG_PRINT("info", ("result: %f", *to)); - - return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK); -} - -/* - Convert double to decimal - - SYNOPSIS - double2decimal() - from - value to convert - to - result will be stored there - - RETURN VALUE - E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED -*/ - -int double2decimal(double from, decimal_t *to) -{ - char buff[FLOATING_POINT_BUFFER], *end; - int res; - DBUG_ENTER("double2decimal"); - end= buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE, sizeof(buff) - 1, buff, NULL); - res= string2decimal(buff, to, &end); - DBUG_PRINT("exit", ("res: %d", res)); - DBUG_RETURN(res); -} - - -static int ull2dec(ulonglong from, decimal_t *to) -{ - int intg1, error=E_DEC_OK; - ulonglong x=from; - dec1 *buf; - - sanity(to); - - for (intg1=1; from >= DIG_BASE; intg1++, from/=DIG_BASE) ; - if (unlikely(intg1 > to->len)) - { - intg1=to->len; - error=E_DEC_OVERFLOW; - } - to->frac=0; - to->intg=intg1*DIG_PER_DEC1; - - for (buf=to->buf+intg1; intg1; intg1--) - { - ulonglong y=x/DIG_BASE; - *--buf=(dec1)(x-y*DIG_BASE); - x=y; - } - return error; -} - -int ulonglong2decimal(ulonglong from, decimal_t *to) -{ - to->sign=0; - return ull2dec(from, to); -} - -int longlong2decimal(longlong from, decimal_t *to) -{ - if ((to->sign= from < 0)) - return ull2dec(-from, to); - return ull2dec(from, to); -} - -int decimal2ulonglong(decimal_t *from, ulonglong *to) -{ - dec1 *buf=from->buf; - ulonglong x=0; - int intg, frac; - - if (from->sign) - { - *to=ULL(0); - return E_DEC_OVERFLOW; - } - - for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) - { - ulonglong y=x; - x=x*DIG_BASE + *buf++; - if (unlikely(y > ((ulonglong) ULONGLONG_MAX/DIG_BASE) || x < y)) - { - *to=ULONGLONG_MAX; - return E_DEC_OVERFLOW; - } - } - *to=x; - for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1) - if (*buf++) - return E_DEC_TRUNCATED; - return E_DEC_OK; -} - -int decimal2longlong(decimal_t *from, longlong *to) -{ - dec1 *buf=from->buf; - longlong x=0; - int intg, frac; - - for (intg=from->intg; intg > 0; intg-=DIG_PER_DEC1) - { - longlong y=x; - /* - Attention: trick! - we're calculating -|from| instead of |from| here - because |LONGLONG_MIN| > LONGLONG_MAX - so we can convert -9223372036854775808 correctly - */ - x=x*DIG_BASE - *buf++; - if (unlikely(y < (LONGLONG_MIN/DIG_BASE) || x > y)) - { - /* - the decimal is bigger than any possible integer - return border integer depending on the sign - */ - *to= from->sign ? LONGLONG_MIN : LONGLONG_MAX; - return E_DEC_OVERFLOW; - } - } - /* boundary case: 9223372036854775808 */ - if (unlikely(from->sign==0 && x == LONGLONG_MIN)) - { - *to= LONGLONG_MAX; - return E_DEC_OVERFLOW; - } - - *to=from->sign ? x : -x; - for (frac=from->frac; unlikely(frac > 0); frac-=DIG_PER_DEC1) - if (*buf++) - return E_DEC_TRUNCATED; - return E_DEC_OK; -} - -/* - Convert decimal to its binary fixed-length representation - two representations of the same length can be compared with memcmp - with the correct -1/0/+1 result - - SYNOPSIS - decimal2bin() - from - value to convert - to - points to buffer where string representation should be stored - precision/scale - see decimal_bin_size() below - - NOTE - the buffer is assumed to be of the size decimal_bin_size(precision, scale) - - RETURN VALUE - E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW - - DESCRIPTION - for storage decimal numbers are converted to the "binary" format. - - This format has the following properties: - 1. length of the binary representation depends on the {precision, scale} - as provided by the caller and NOT on the intg/frac of the decimal to - convert. - 2. binary representations of the same {precision, scale} can be compared - with memcmp - with the same result as decimal_cmp() of the original - decimals (not taking into account possible precision loss during - conversion). - - This binary format is as follows: - 1. First the number is converted to have a requested precision and scale. - 2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes - as is - 3. The first intg % DIG_PER_DEC1 digits are stored in the reduced - number of bytes (enough bytes to store this number of digits - - see dig2bytes) - 4. same for frac - full decimal_digit_t's are stored as is, - the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes. - 5. If the number is negative - every byte is inversed. - 5. The very first bit of the resulting byte array is inverted (because - memcmp compares unsigned bytes, see property 2 above) - - Example: - - 1234567890.1234 - - internally is represented as 3 decimal_digit_t's - - 1 234567890 123400000 - - (assuming we want a binary representation with precision=14, scale=4) - in hex it's - - 00-00-00-01 0D-FB-38-D2 07-5A-EF-40 - - now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes - into binary representation as is: - - - ........... 0D-FB-38-D2 ............ - - First decimal_digit_t has only one decimal digit. We can store one digit in - one byte, no need to waste four: - - 01 0D-FB-38-D2 ............ - - now, last digit. It's 123400000. We can store 1234 in two bytes: - - 01 0D-FB-38-D2 04-D2 - - So, we've packed 12 bytes number in 7 bytes. - And now we invert the highest bit to get the final result: - - 81 0D FB 38 D2 04 D2 - - And for -1234567890.1234 it would be - - 7E F2 04 37 2D FB 2D -*/ -int decimal2bin(decimal_t *from, uchar *to, int precision, int frac) -{ - dec1 mask=from->sign ? -1 : 0, *buf1=from->buf, *stop1; - int error=E_DEC_OK, intg=precision-frac, - isize1, intg1, intg1x, from_intg, - intg0=intg/DIG_PER_DEC1, - frac0=frac/DIG_PER_DEC1, - intg0x=intg-intg0*DIG_PER_DEC1, - frac0x=frac-frac0*DIG_PER_DEC1, - frac1=from->frac/DIG_PER_DEC1, - frac1x=from->frac-frac1*DIG_PER_DEC1, - isize0=intg0*sizeof(dec1)+dig2bytes[intg0x], - fsize0=frac0*sizeof(dec1)+dig2bytes[frac0x], - fsize1=frac1*sizeof(dec1)+dig2bytes[frac1x]; - const int orig_isize0= isize0; - const int orig_fsize0= fsize0; - uchar *orig_to= to; - - buf1= remove_leading_zeroes(from, &from_intg); - - if (unlikely(from_intg+fsize1==0)) - { - mask=0; /* just in case */ - intg=1; - buf1=&mask; - } - - intg1=from_intg/DIG_PER_DEC1; - intg1x=from_intg-intg1*DIG_PER_DEC1; - isize1=intg1*sizeof(dec1)+dig2bytes[intg1x]; - - if (intg < from_intg) - { - buf1+=intg1-intg0+(intg1x>0)-(intg0x>0); - intg1=intg0; intg1x=intg0x; - error=E_DEC_OVERFLOW; - } - else if (isize0 > isize1) - { - while (isize0-- > isize1) - *to++= (char)mask; - } - if (fsize0 < fsize1) - { - frac1=frac0; frac1x=frac0x; - error=E_DEC_TRUNCATED; - } - else if (fsize0 > fsize1 && frac1x) - { - if (frac0 == frac1) - { - frac1x=frac0x; - fsize0= fsize1; - } - else - { - frac1++; - frac1x=0; - } - } - - /* intg1x part */ - if (intg1x) - { - int i=dig2bytes[intg1x]; - dec1 x=(*buf1++ % powers10[intg1x]) ^ mask; - switch (i) - { - case 1: mi_int1store(to, x); break; - case 2: mi_int2store(to, x); break; - case 3: mi_int3store(to, x); break; - case 4: mi_int4store(to, x); break; - default: DBUG_ASSERT(0); - } - to+=i; - } - - /* intg1+frac1 part */ - for (stop1=buf1+intg1+frac1; buf1 < stop1; to+=sizeof(dec1)) - { - dec1 x=*buf1++ ^ mask; - DBUG_ASSERT(sizeof(dec1) == 4); - mi_int4store(to, x); - } - - /* frac1x part */ - if (frac1x) - { - dec1 x; - int i=dig2bytes[frac1x], - lim=(frac1 < frac0 ? DIG_PER_DEC1 : frac0x); - while (frac1x < lim && dig2bytes[frac1x] == i) - frac1x++; - x=(*buf1 / powers10[DIG_PER_DEC1 - frac1x]) ^ mask; - switch (i) - { - case 1: mi_int1store(to, x); break; - case 2: mi_int2store(to, x); break; - case 3: mi_int3store(to, x); break; - case 4: mi_int4store(to, x); break; - default: DBUG_ASSERT(0); - } - to+=i; - } - if (fsize0 > fsize1) - { - uchar *to_end= orig_to + orig_fsize0 + orig_isize0; - - while (fsize0-- > fsize1 && to < to_end) - *to++= (uchar)mask; - } - orig_to[0]^= 0x80; - - /* Check that we have written the whole decimal and nothing more */ - DBUG_ASSERT(to == orig_to + orig_fsize0 + orig_isize0); - return error; -} - -/* - Restores decimal from its binary fixed-length representation - - SYNOPSIS - bin2decimal() - from - value to convert - to - result - precision/scale - see decimal_bin_size() below - - NOTE - see decimal2bin() - the buffer is assumed to be of the size decimal_bin_size(precision, scale) - - RETURN VALUE - E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW -*/ - -int bin2decimal(const uchar *from, decimal_t *to, int precision, int scale) -{ - int error=E_DEC_OK, intg=precision-scale, - intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, - intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1, - intg1=intg0+(intg0x>0), frac1=frac0+(frac0x>0); - dec1 *buf=to->buf, mask=(*from & 0x80) ? 0 : -1; - const uchar *stop; - uchar *d_copy; - int bin_size= decimal_bin_size(precision, scale); - - sanity(to); - d_copy= (uchar*) my_alloca(bin_size); - memcpy(d_copy, from, bin_size); - d_copy[0]^= 0x80; - from= d_copy; - - FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error); - if (unlikely(error)) - { - if (intg1 < intg0+(intg0x>0)) - { - from+=dig2bytes[intg0x]+sizeof(dec1)*(intg0-intg1); - frac0=frac0x=intg0x=0; - intg0=intg1; - } - else - { - frac0x=0; - frac0=frac1; - } - } - - to->sign=(mask != 0); - to->intg=intg0*DIG_PER_DEC1+intg0x; - to->frac=frac0*DIG_PER_DEC1+frac0x; - - if (intg0x) - { - int i=dig2bytes[intg0x]; - dec1 UNINIT_VAR(x); - switch (i) - { - case 1: x=mi_sint1korr(from); break; - case 2: x=mi_sint2korr(from); break; - case 3: x=mi_sint3korr(from); break; - case 4: x=mi_sint4korr(from); break; - default: DBUG_ASSERT(0); - } - from+=i; - *buf=x ^ mask; - if (((ulonglong)*buf) >= (ulonglong) powers10[intg0x+1]) - goto err; - if (buf > to->buf || *buf != 0) - buf++; - else - to->intg-=intg0x; - } - for (stop=from+intg0*sizeof(dec1); from < stop; from+=sizeof(dec1)) - { - DBUG_ASSERT(sizeof(dec1) == 4); - *buf=mi_sint4korr(from) ^ mask; - if (((uint32)*buf) > DIG_MAX) - goto err; - if (buf > to->buf || *buf != 0) - buf++; - else - to->intg-=DIG_PER_DEC1; - } - DBUG_ASSERT(to->intg >=0); - for (stop=from+frac0*sizeof(dec1); from < stop; from+=sizeof(dec1)) - { - DBUG_ASSERT(sizeof(dec1) == 4); - *buf=mi_sint4korr(from) ^ mask; - if (((uint32)*buf) > DIG_MAX) - goto err; - buf++; - } - if (frac0x) - { - int i=dig2bytes[frac0x]; - dec1 UNINIT_VAR(x); - switch (i) - { - case 1: x=mi_sint1korr(from); break; - case 2: x=mi_sint2korr(from); break; - case 3: x=mi_sint3korr(from); break; - case 4: x=mi_sint4korr(from); break; - default: DBUG_ASSERT(0); - } - *buf=(x ^ mask) * powers10[DIG_PER_DEC1 - frac0x]; - if (((uint32)*buf) > DIG_MAX) - goto err; - buf++; - } - my_afree(d_copy); - return error; - -err: - my_afree(d_copy); - decimal_make_zero(((decimal_t*) to)); - return(E_DEC_BAD_NUM); -} - -/* - Returns the size of array to hold a decimal with given precision and scale - - RETURN VALUE - size in dec1 - (multiply by sizeof(dec1) to get the size if bytes) -*/ - -int decimal_size(int precision, int scale) -{ - DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision); - return ROUND_UP(precision-scale)+ROUND_UP(scale); -} - -/* - Returns the size of array to hold a binary representation of a decimal - - RETURN VALUE - size in bytes -*/ - -int decimal_bin_size(int precision, int scale) -{ - int intg=precision-scale, - intg0=intg/DIG_PER_DEC1, frac0=scale/DIG_PER_DEC1, - intg0x=intg-intg0*DIG_PER_DEC1, frac0x=scale-frac0*DIG_PER_DEC1; - - DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision); - return intg0*sizeof(dec1)+dig2bytes[intg0x]+ - frac0*sizeof(dec1)+dig2bytes[frac0x]; -} - -/* - Rounds the decimal to "scale" digits - - SYNOPSIS - decimal_round() - from - decimal to round, - to - result buffer. from==to is allowed - scale - to what position to round. can be negative! - mode - round to nearest even or truncate - - NOTES - scale can be negative ! - one TRUNCATED error (line XXX below) isn't treated very logical :( - - RETURN VALUE - E_DEC_OK/E_DEC_TRUNCATED -*/ - -int -decimal_round(decimal_t *from, decimal_t *to, int scale, - decimal_round_mode mode) -{ - int frac0=scale>0 ? ROUND_UP(scale) : scale/DIG_PER_DEC1, - frac1=ROUND_UP(from->frac), UNINIT_VAR(round_digit), - intg0=ROUND_UP(from->intg), error=E_DEC_OK, len=to->len, - intg1=ROUND_UP(from->intg + - (((intg0 + frac0)>0) && (from->buf[0] == DIG_MAX))); - dec1 *buf0=from->buf, *buf1=to->buf, x, y, carry=0; - int first_dig; - - sanity(to); - - switch (mode) { - case HALF_UP: - case HALF_EVEN: round_digit=5; break; - case CEILING: round_digit= from->sign ? 10 : 0; break; - case FLOOR: round_digit= from->sign ? 0 : 10; break; - case TRUNCATE: round_digit=10; break; - default: DBUG_ASSERT(0); - } - - if (unlikely(frac0+intg0 > len)) - { - frac0=len-intg0; - scale=frac0*DIG_PER_DEC1; - error=E_DEC_TRUNCATED; - } - - if (scale+from->intg < 0) - { - decimal_make_zero(to); - return E_DEC_OK; - } - - if (to != from || intg1>intg0) - { - dec1 *p0= buf0+intg0+max(frac1, frac0); - dec1 *p1= buf1+intg1+max(frac1, frac0); - - while (buf0 < p0) - *(--p1) = *(--p0); - if (unlikely(intg1 > intg0)) - to->buf[0]= 0; - - intg0= intg1; - buf0=to->buf; - buf1=to->buf; - to->sign=from->sign; - to->intg=min(intg0, len)*DIG_PER_DEC1; - } - - if (frac0 > frac1) - { - buf1+=intg0+frac1; - while (frac0-- > frac1) - *buf1++=0; - goto done; - } - - if (scale >= from->frac) - goto done; /* nothing to do */ - - buf0+=intg0+frac0-1; - buf1+=intg0+frac0-1; - if (scale == frac0*DIG_PER_DEC1) - { - int do_inc= FALSE; - DBUG_ASSERT(frac0+intg0 >= 0); - switch (round_digit) { - case 0: - { - dec1 *p0= buf0 + (frac1-frac0); - for (; p0 > buf0; p0--) - { - if (*p0) - { - do_inc= TRUE; - break; - } - } - break; - } - case 5: - { - x= buf0[1]/DIG_MASK; - do_inc= (x>5) || ((x == 5) && - (mode == HALF_UP || (frac0+intg0 > 0 && *buf0 & 1))); - break; - } - default: - break; - } - if (do_inc) - { - if (frac0+intg0>0) - (*buf1)++; - else - *(++buf1)=DIG_BASE; - } - else if (frac0+intg0==0) - { - decimal_make_zero(to); - return E_DEC_OK; - } - } - else - { - /* TODO - fix this code as it won't work for CEILING mode */ - int pos=frac0*DIG_PER_DEC1-scale-1; - DBUG_ASSERT(frac0+intg0 > 0); - x=*buf1 / powers10[pos]; - y=x % 10; - if (y > round_digit || - (round_digit == 5 && y == 5 && (mode == HALF_UP || (x/10) & 1))) - x+=10; - *buf1=powers10[pos]*(x-y); - } - /* - In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside - the buffer are as follows. - - Before <1, 5e8> - After <2, 5e8> - - Hence we need to set the 2nd field to 0. - The same holds if we round 1.5e-9 to 2e-9. - */ - if (frac0 < frac1) - { - dec1 *buf= to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0); - dec1 *end= to->buf + len; - - while (buf < end) - *buf++=0; - } - if (*buf1 >= DIG_BASE) - { - carry=1; - *buf1-=DIG_BASE; - while (carry && --buf1 >= to->buf) - ADD(*buf1, *buf1, 0, carry); - if (unlikely(carry)) - { - /* shifting the number to create space for new digit */ - if (frac0+intg0 >= len) - { - frac0--; - scale=frac0*DIG_PER_DEC1; - error=E_DEC_TRUNCATED; /* XXX */ - } - for (buf1=to->buf+intg0+max(frac0,0); buf1 > to->buf; buf1--) - { - buf1[0]=buf1[-1]; - } - *buf1=1; - to->intg++; - } - } - else - { - for (;;) - { - if (likely(*buf1)) - break; - if (buf1-- == to->buf) - { - /* making 'zero' with the proper scale */ - dec1 *p0= to->buf + frac0 + 1; - to->intg=1; - to->frac= max(scale, 0); - to->sign= 0; - for (buf1= to->buf; buf1<p0; buf1++) - *buf1= 0; - return E_DEC_OK; - } - } - } - - /* Here we check 999.9 -> 1000 case when we need to increase intg */ - first_dig= to->intg % DIG_PER_DEC1; - if (first_dig && (*buf1 >= powers10[first_dig])) - to->intg++; - - if (scale<0) - scale=0; - -done: - to->frac=scale; - return error; -} - -/* - Returns the size of the result of the operation - - SYNOPSIS - decimal_result_size() - from1 - operand of the unary operation or first operand of the - binary operation - from2 - second operand of the binary operation - op - operation. one char '+', '-', '*', '/' are allowed - others may be added later - param - extra param to the operation. unused for '+', '-', '*' - scale increment for '/' - - NOTE - returned valued may be larger than the actual buffer requred - in the operation, as decimal_result_size, by design, operates on - precision/scale values only and not on the actual decimal number - - RETURN VALUE - size of to->buf array in dec1 elements. to get size in bytes - multiply by sizeof(dec1) -*/ - -int decimal_result_size(decimal_t *from1, decimal_t *from2, char op, int param) -{ - switch (op) { - case '-': - return ROUND_UP(max(from1->intg, from2->intg)) + - ROUND_UP(max(from1->frac, from2->frac)); - case '+': - return ROUND_UP(max(from1->intg, from2->intg)+1) + - ROUND_UP(max(from1->frac, from2->frac)); - case '*': - return ROUND_UP(from1->intg+from2->intg)+ - ROUND_UP(from1->frac)+ROUND_UP(from2->frac); - case '/': - return ROUND_UP(from1->intg+from2->intg+1+from1->frac+from2->frac+param); - default: DBUG_ASSERT(0); - } - return -1; /* shut up the warning */ -} - -static int do_add(decimal_t *from1, decimal_t *from2, decimal_t *to) -{ - int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), - frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), - frac0=max(frac1, frac2), intg0=max(intg1, intg2), error; - dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry; - - sanity(to); - - /* is there a need for extra word because of carry ? */ - x=intg1 > intg2 ? from1->buf[0] : - intg2 > intg1 ? from2->buf[0] : - from1->buf[0] + from2->buf[0] ; - if (unlikely(x > DIG_MAX-1)) /* yes, there is */ - { - intg0++; - to->buf[0]=0; /* safety */ - } - - FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); - if (unlikely(error == E_DEC_OVERFLOW)) - { - max_decimal(to->len * DIG_PER_DEC1, 0, to); - return error; - } - - buf0=to->buf+intg0+frac0; - - to->sign=from1->sign; - to->frac=max(from1->frac, from2->frac); - to->intg=intg0*DIG_PER_DEC1; - if (unlikely(error)) - { - set_if_smaller(to->frac, frac0*DIG_PER_DEC1); - set_if_smaller(frac1, frac0); - set_if_smaller(frac2, frac0); - set_if_smaller(intg1, intg0); - set_if_smaller(intg2, intg0); - } - - /* part 1 - max(frac) ... min (frac) */ - if (frac1 > frac2) - { - buf1=from1->buf+intg1+frac1; - stop=from1->buf+intg1+frac2; - buf2=from2->buf+intg2+frac2; - stop2=from1->buf+(intg1 > intg2 ? intg1-intg2 : 0); - } - else - { - buf1=from2->buf+intg2+frac2; - stop=from2->buf+intg2+frac1; - buf2=from1->buf+intg1+frac1; - stop2=from2->buf+(intg2 > intg1 ? intg2-intg1 : 0); - } - while (buf1 > stop) - *--buf0=*--buf1; - - /* part 2 - min(frac) ... min(intg) */ - carry=0; - while (buf1 > stop2) - { - ADD(*--buf0, *--buf1, *--buf2, carry); - } - - /* part 3 - min(intg) ... max(intg) */ - buf1= intg1 > intg2 ? ((stop=from1->buf)+intg1-intg2) : - ((stop=from2->buf)+intg2-intg1) ; - while (buf1 > stop) - { - ADD(*--buf0, *--buf1, 0, carry); - } - - if (unlikely(carry)) - *--buf0=1; - DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf+1); - - return error; -} - -/* to=from1-from2. - if to==0, return -1/0/+1 - the result of the comparison */ -static int do_sub(decimal_t *from1, decimal_t *from2, decimal_t *to) -{ - int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), - frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac); - int frac0=max(frac1, frac2), error; - dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2, carry=0; - - /* let carry:=1 if from2 > from1 */ - start1=buf1=from1->buf; stop1=buf1+intg1; - start2=buf2=from2->buf; stop2=buf2+intg2; - if (unlikely(*buf1 == 0)) - { - while (buf1 < stop1 && *buf1 == 0) - buf1++; - start1=buf1; - intg1= (int) (stop1-buf1); - } - if (unlikely(*buf2 == 0)) - { - while (buf2 < stop2 && *buf2 == 0) - buf2++; - start2=buf2; - intg2= (int) (stop2-buf2); - } - if (intg2 > intg1) - carry=1; - else if (intg2 == intg1) - { - dec1 *end1= stop1 + (frac1 - 1); - dec1 *end2= stop2 + (frac2 - 1); - while (unlikely((buf1 <= end1) && (*end1 == 0))) - end1--; - while (unlikely((buf2 <= end2) && (*end2 == 0))) - end2--; - frac1= (int) (end1 - stop1) + 1; - frac2= (int) (end2 - stop2) + 1; - while (buf1 <=end1 && buf2 <= end2 && *buf1 == *buf2) - buf1++, buf2++; - if (buf1 <= end1) - { - if (buf2 <= end2) - carry= *buf2 > *buf1; - else - carry= 0; - } - else - { - if (buf2 <= end2) - carry=1; - else /* short-circuit everything: from1 == from2 */ - { - if (to == 0) /* decimal_cmp() */ - return 0; - decimal_make_zero(to); - return E_DEC_OK; - } - } - } - - if (to == 0) /* decimal_cmp() */ - return carry == from1->sign ? 1 : -1; - - sanity(to); - - to->sign=from1->sign; - - /* ensure that always from1 > from2 (and intg1 >= intg2) */ - if (carry) - { - swap_variables(decimal_t *,from1,from1); - swap_variables(dec1 *,start1, start2); - swap_variables(int,intg1,intg2); - swap_variables(int,frac1,frac2); - to->sign= 1 - to->sign; - } - - FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error); - buf0=to->buf+intg1+frac0; - - to->frac=max(from1->frac, from2->frac); - to->intg=intg1*DIG_PER_DEC1; - if (unlikely(error)) - { - set_if_smaller(to->frac, frac0*DIG_PER_DEC1); - set_if_smaller(frac1, frac0); - set_if_smaller(frac2, frac0); - set_if_smaller(intg2, intg1); - } - carry=0; - - /* part 1 - max(frac) ... min (frac) */ - if (frac1 > frac2) - { - buf1=start1+intg1+frac1; - stop1=start1+intg1+frac2; - buf2=start2+intg2+frac2; - while (frac0-- > frac1) - *--buf0=0; - while (buf1 > stop1) - *--buf0=*--buf1; - } - else - { - buf1=start1+intg1+frac1; - buf2=start2+intg2+frac2; - stop2=start2+intg2+frac1; - while (frac0-- > frac2) - *--buf0=0; - while (buf2 > stop2) - { - SUB(*--buf0, 0, *--buf2, carry); - } - } - - /* part 2 - min(frac) ... intg2 */ - while (buf2 > start2) - { - SUB(*--buf0, *--buf1, *--buf2, carry); - } - - /* part 3 - intg2 ... intg1 */ - while (carry && buf1 > start1) - { - SUB(*--buf0, *--buf1, 0, carry); - } - - while (buf1 > start1) - *--buf0=*--buf1; - - while (buf0 > to->buf) - *--buf0=0; - - return error; -} - -int decimal_intg(decimal_t *from) -{ - int res; - remove_leading_zeroes(from, &res); - return res; -} - -int decimal_add(decimal_t *from1, decimal_t *from2, decimal_t *to) -{ - if (likely(from1->sign == from2->sign)) - return do_add(from1, from2, to); - return do_sub(from1, from2, to); -} - -int decimal_sub(decimal_t *from1, decimal_t *from2, decimal_t *to) -{ - if (likely(from1->sign == from2->sign)) - return do_sub(from1, from2, to); - return do_add(from1, from2, to); -} - -int decimal_cmp(decimal_t *from1, decimal_t *from2) -{ - if (likely(from1->sign == from2->sign)) - return do_sub(from1, from2, 0); - return from1->sign > from2->sign ? -1 : 1; -} - -int decimal_is_zero(decimal_t *from) -{ - dec1 *buf1=from->buf, - *end=buf1+ROUND_UP(from->intg)+ROUND_UP(from->frac); - while (buf1 < end) - if (*buf1++) - return 0; - return 1; -} - -/* - multiply two decimals - - SYNOPSIS - decimal_mul() - from1, from2 - factors - to - product - - RETURN VALUE - E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW; - - NOTES - in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9, - and 63-digit number will take only 7 dec1 words (basically a 7-digit - "base 999999999" number). Thus there's no need in fast multiplication - algorithms, 7-digit numbers can be multiplied with a naive O(n*n) - method. - - XXX if this library is to be used with huge numbers of thousands of - digits, fast multiplication must be implemented. -*/ -int decimal_mul(decimal_t *from1, decimal_t *from2, decimal_t *to) -{ - int intg1=ROUND_UP(from1->intg), intg2=ROUND_UP(from2->intg), - frac1=ROUND_UP(from1->frac), frac2=ROUND_UP(from2->frac), - intg0=ROUND_UP(from1->intg+from2->intg), - frac0=frac1+frac2, error, i, j, d_to_move; - dec1 *buf1=from1->buf+intg1, *buf2=from2->buf+intg2, *buf0, - *start2, *stop2, *stop1, *start0, carry; - - sanity(to); - - i=intg0; /* save 'ideal' values */ - j=frac0; - FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); /* bound size */ - to->sign=from1->sign != from2->sign; - to->frac=from1->frac+from2->frac; /* store size in digits */ - to->intg=intg0*DIG_PER_DEC1; - - if (unlikely(error)) - { - set_if_smaller(to->frac, frac0*DIG_PER_DEC1); - set_if_smaller(to->intg, intg0*DIG_PER_DEC1); - if (unlikely(i > intg0)) /* bounded integer-part */ - { - i-=intg0; - j=i >> 1; - intg1-= j; - intg2-=i-j; - frac1=frac2=0; /* frac0 is already 0 here */ - } - else /* bounded fract part */ - { - j-=frac0; - i=j >> 1; - if (frac1 <= frac2) - { - frac1-= i; - frac2-=j-i; - } - else - { - frac2-= i; - frac1-=j-i; - } - } - } - start0=to->buf+intg0+frac0-1; - start2=buf2+frac2-1; - stop1=buf1-intg1; - stop2=buf2-intg2; - - bzero(to->buf, (intg0+frac0)*sizeof(dec1)); - - for (buf1+=frac1-1; buf1 >= stop1; buf1--, start0--) - { - carry=0; - for (buf0=start0, buf2=start2; buf2 >= stop2; buf2--, buf0--) - { - dec1 hi, lo; - dec2 p= ((dec2)*buf1) * ((dec2)*buf2); - hi=(dec1)(p/DIG_BASE); - lo=(dec1)(p-((dec2)hi)*DIG_BASE); - ADD2(*buf0, *buf0, lo, carry); - carry+=hi; - } - if (carry) - { - if (buf0 < to->buf) - return E_DEC_OVERFLOW; - ADD2(*buf0, *buf0, 0, carry); - } - for (buf0--; carry; buf0--) - { - if (buf0 < to->buf) - return E_DEC_OVERFLOW; - ADD(*buf0, *buf0, 0, carry); - } - } - - /* Now we have to check for -0.000 case */ - if (to->sign) - { - dec1 *buf= to->buf; - dec1 *end= to->buf + intg0 + frac0; - DBUG_ASSERT(buf != end); - for (;;) - { - if (*buf) - break; - if (++buf == end) - { - /* We got decimal zero */ - decimal_make_zero(to); - break; - } - } - } - buf1= to->buf; - d_to_move= intg0 + ROUND_UP(to->frac); - while (!*buf1 && (to->intg > DIG_PER_DEC1)) - { - buf1++; - to->intg-= DIG_PER_DEC1; - d_to_move--; - } - if (to->buf < buf1) - { - dec1 *cur_d= to->buf; - for (; d_to_move--; cur_d++, buf1++) - *cur_d= *buf1; - } - return error; -} - -/* - naive division algorithm (Knuth's Algorithm D in 4.3.1) - - it's ok for short numbers - also we're using alloca() to allocate a temporary buffer - - XXX if this library is to be used with huge numbers of thousands of - digits, fast division must be implemented and alloca should be - changed to malloc (or at least fallback to malloc if alloca() fails) - but then, decimal_mul() should be rewritten too :( -*/ -static int do_div_mod(decimal_t *from1, decimal_t *from2, - decimal_t *to, decimal_t *mod, int scale_incr) -{ - int frac1=ROUND_UP(from1->frac)*DIG_PER_DEC1, prec1=from1->intg+frac1, - frac2=ROUND_UP(from2->frac)*DIG_PER_DEC1, prec2=from2->intg+frac2, - UNINIT_VAR(error), i, intg0, frac0, len1, len2, dintg, div_mod=(!mod); - dec1 *buf0, *buf1=from1->buf, *buf2=from2->buf, *tmp1, - *start2, *stop2, *stop1, *stop0, norm2, carry, *start1, dcarry; - dec2 norm_factor, x, guess, y; - - if (mod) - to=mod; - - sanity(to); - - /* removing all the leading zeroes */ - i= ((prec2 - 1) % DIG_PER_DEC1) + 1; - while (prec2 > 0 && *buf2 == 0) - { - prec2-= i; - i= DIG_PER_DEC1; - buf2++; - } - if (prec2 <= 0) /* short-circuit everything: from2 == 0 */ - return E_DEC_DIV_ZERO; - for (i= (prec2 - 1) % DIG_PER_DEC1; *buf2 < powers10[i--]; prec2--) ; - DBUG_ASSERT(prec2 > 0); - - i=((prec1-1) % DIG_PER_DEC1)+1; - while (prec1 > 0 && *buf1 == 0) - { - prec1-=i; - i=DIG_PER_DEC1; - buf1++; - } - if (prec1 <= 0) - { /* short-circuit everything: from1 == 0 */ - decimal_make_zero(to); - return E_DEC_OK; - } - for (i=(prec1-1) % DIG_PER_DEC1; *buf1 < powers10[i--]; prec1--) ; - DBUG_ASSERT(prec1 > 0); - - /* let's fix scale_incr, taking into account frac1,frac2 increase */ - if ((scale_incr-= frac1 - from1->frac + frac2 - from2->frac) < 0) - scale_incr=0; - - dintg=(prec1-frac1)-(prec2-frac2)+(*buf1 >= *buf2); - if (dintg < 0) - { - dintg/=DIG_PER_DEC1; - intg0=0; - } - else - intg0=ROUND_UP(dintg); - if (mod) - { - /* we're calculating N1 % N2. - The result will have - frac=max(frac1, frac2), as for subtraction - intg=intg2 - */ - to->sign=from1->sign; - to->frac=max(from1->frac, from2->frac); - frac0=0; - } - else - { - /* - we're calculating N1/N2. N1 is in the buf1, has prec1 digits - N2 is in the buf2, has prec2 digits. Scales are frac1 and - frac2 accordingly. - Thus, the result will have - frac = ROUND_UP(frac1+frac2+scale_incr) - and - intg = (prec1-frac1) - (prec2-frac2) + 1 - prec = intg+frac - */ - frac0=ROUND_UP(frac1+frac2+scale_incr); - FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); - to->sign=from1->sign != from2->sign; - to->intg=intg0*DIG_PER_DEC1; - to->frac=frac0*DIG_PER_DEC1; - } - buf0=to->buf; - stop0=buf0+intg0+frac0; - if (likely(div_mod)) - while (dintg++ < 0) - *buf0++=0; - - len1=(i=ROUND_UP(prec1))+ROUND_UP(2*frac2+scale_incr+1) + 1; - set_if_bigger(len1, 3); - if (!(tmp1=(dec1 *)my_alloca(len1*sizeof(dec1)))) - return E_DEC_OOM; - memcpy(tmp1, buf1, i*sizeof(dec1)); - bzero(tmp1+i, (len1-i)*sizeof(dec1)); - - start1=tmp1; - stop1=start1+len1; - start2=buf2; - stop2=buf2+ROUND_UP(prec2)-1; - - /* removing end zeroes */ - while (*stop2 == 0 && stop2 >= start2) - stop2--; - len2= (int) (stop2++ - start2); - - /* - calculating norm2 (normalized *start2) - we need *start2 to be large - (at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to - normalize input numbers (as we don't make a copy of the divisor). - Thus we normalize first dec1 of buf2 only, and we'll normalize *start1 - on the fly for the purpose of guesstimation only. - It's also faster, as we're saving on normalization of buf2 - */ - norm_factor=DIG_BASE/(*start2+1); - norm2=(dec1)(norm_factor*start2[0]); - if (likely(len2>0)) - norm2+=(dec1)(norm_factor*start2[1]/DIG_BASE); - - if (*start1 < *start2) - dcarry=*start1++; - else - dcarry=0; - - /* main loop */ - for (; buf0 < stop0; buf0++) - { - /* short-circuit, if possible */ - if (unlikely(dcarry == 0 && *start1 < *start2)) - guess=0; - else - { - /* D3: make a guess */ - x=start1[0]+((dec2)dcarry)*DIG_BASE; - y=start1[1]; - guess=(norm_factor*x+norm_factor*y/DIG_BASE)/norm2; - if (unlikely(guess >= DIG_BASE)) - guess=DIG_BASE-1; - if (likely(len2>0)) - { - /* hmm, this is a suspicious trick - I removed normalization here */ - if (start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y) - guess--; - if (unlikely(start2[1]*guess > (x-guess*start2[0])*DIG_BASE+y)) - guess--; - DBUG_ASSERT(start2[1]*guess <= (x-guess*start2[0])*DIG_BASE+y); - } - - /* D4: multiply and subtract */ - buf2=stop2; - buf1=start1+len2; - DBUG_ASSERT(buf1 < stop1); - for (carry=0; buf2 > start2; buf1--) - { - dec1 hi, lo; - x=guess * (*--buf2); - hi=(dec1)(x/DIG_BASE); - lo=(dec1)(x-((dec2)hi)*DIG_BASE); - SUB2(*buf1, *buf1, lo, carry); - carry+=hi; - } - carry= dcarry < carry; - - /* D5: check the remainder */ - if (unlikely(carry)) - { - /* D6: correct the guess */ - guess--; - buf2=stop2; - buf1=start1+len2; - for (carry=0; buf2 > start2; buf1--) - { - ADD(*buf1, *buf1, *--buf2, carry); - } - } - } - if (likely(div_mod)) - *buf0=(dec1)guess; - dcarry= *start1; - start1++; - } - if (mod) - { - /* - now the result is in tmp1, it has - intg=prec1-frac1 - frac=max(frac1, frac2)=to->frac - */ - if (dcarry) - *--start1=dcarry; - buf0=to->buf; - intg0=(int) (ROUND_UP(prec1-frac1)-(start1-tmp1)); - frac0=ROUND_UP(to->frac); - error=E_DEC_OK; - if (unlikely(frac0==0 && intg0==0)) - { - decimal_make_zero(to); - goto done; - } - if (intg0<=0) - { - if (unlikely(-intg0 >= to->len)) - { - decimal_make_zero(to); - error=E_DEC_TRUNCATED; - goto done; - } - stop1=start1+frac0; - frac0+=intg0; - to->intg=0; - while (intg0++ < 0) - *buf0++=0; - } - else - { - if (unlikely(intg0 > to->len)) - { - frac0=0; - intg0=to->len; - error=E_DEC_OVERFLOW; - goto done; - } - DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg)); - stop1=start1+frac0+intg0; - to->intg=min(intg0*DIG_PER_DEC1, from2->intg); - } - if (unlikely(intg0+frac0 > to->len)) - { - stop1-=frac0+intg0-to->len; - frac0=to->len-intg0; - to->frac=frac0*DIG_PER_DEC1; - error=E_DEC_TRUNCATED; - } - DBUG_ASSERT(buf0 + (stop1 - start1) <= to->buf + to->len); - while (start1 < stop1) - *buf0++=*start1++; - } -done: - my_afree(tmp1); - return error; -} - -/* - division of two decimals - - SYNOPSIS - decimal_div() - from1 - dividend - from2 - divisor - to - quotient - - RETURN VALUE - E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; - - NOTES - see do_div_mod() -*/ - -int -decimal_div(decimal_t *from1, decimal_t *from2, decimal_t *to, int scale_incr) -{ - return do_div_mod(from1, from2, to, 0, scale_incr); -} - -/* - modulus - - SYNOPSIS - decimal_mod() - from1 - dividend - from2 - divisor - to - modulus - - RETURN VALUE - E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO; - - NOTES - see do_div_mod() - - DESCRIPTION - the modulus R in R = M mod N - - is defined as - - 0 <= |R| < |M| - sign R == sign M - R = M - k*N, where k is integer - - thus, there's no requirement for M or N to be integers -*/ - -int decimal_mod(decimal_t *from1, decimal_t *from2, decimal_t *to) -{ - return do_div_mod(from1, from2, 0, to, 0); -} - -#ifdef MAIN - -int full= 0; -decimal_t a, b, c; -char buf1[100], buf2[100], buf3[100]; - -void dump_decimal(decimal_t *d) -{ - int i; - printf("/* intg=%d, frac=%d, sign=%d, buf[]={", d->intg, d->frac, d->sign); - for (i=0; i < ROUND_UP(d->frac)+ROUND_UP(d->intg)-1; i++) - printf("%09d, ", d->buf[i]); - printf("%09d} */ ", d->buf[i]); -} - - -void check_result_code(int actual, int want) -{ - if (actual != want) - { - printf("\n^^^^^^^^^^^^^ must return %d\n", want); - exit(1); - } -} - - -void print_decimal(decimal_t *d, const char *orig, int actual, int want) -{ - char s[100]; - int slen=sizeof(s); - - if (full) dump_decimal(d); - decimal2string(d, s, &slen, 0, 0, 0); - printf("'%s'", s); - check_result_code(actual, want); - if (orig && strcmp(orig, s)) - { - printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); - exit(1); - } -} - -void test_d2s() -{ - char s[100]; - int slen, res; - - /***********************************/ - printf("==== decimal2string ====\n"); - a.buf[0]=12345; a.intg=5; a.frac=0; a.sign=0; - slen=sizeof(s); - res=decimal2string(&a, s, &slen, 0, 0, 0); - dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); - - a.buf[1]=987000000; a.frac=3; - slen=sizeof(s); - res=decimal2string(&a, s, &slen, 0, 0, 0); - dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); - - a.sign=1; - slen=sizeof(s); - res=decimal2string(&a, s, &slen, 0, 0, 0); - dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); - - slen=8; - res=decimal2string(&a, s, &slen, 0, 0, 0); - dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); - - slen=5; - res=decimal2string(&a, s, &slen, 0, 0, 0); - dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); - - a.buf[0]=987000000; a.frac=3; a.intg=0; - slen=sizeof(s); - res=decimal2string(&a, s, &slen, 0, 0, 0); - dump_decimal(&a); printf(" --> res=%d str='%s' len=%d\n", res, s, slen); -} - -void test_s2d(const char *s, const char *orig, int ex) -{ - char s1[100], *end; - int res; - sprintf(s1, "'%s'", s); - end= strend(s); - printf("len=%2d %-30s => res=%d ", a.len, s1, - (res= string2decimal(s, &a, &end))); - print_decimal(&a, orig, res, ex); - printf("\n"); -} - -void test_d2f(const char *s, int ex) -{ - char s1[100], *end; - double x; - int res; - - sprintf(s1, "'%s'", s); - end= strend(s); - string2decimal(s, &a, &end); - res=decimal2double(&a, &x); - if (full) dump_decimal(&a); - printf("%-40s => res=%d %.*g\n", s1, res, a.intg+a.frac, x); - check_result_code(res, ex); -} - -void test_d2b2d(const char *str, int p, int s, const char *orig, int ex) -{ - char s1[100], buf[100], *end; - int res, i, size=decimal_bin_size(p, s); - - sprintf(s1, "'%s'", str); - end= strend(str); - string2decimal(str, &a, &end); - res=decimal2bin(&a, buf, p, s); - printf("%-31s {%2d, %2d} => res=%d size=%-2d ", s1, p, s, res, size); - if (full) - { - printf("0x"); - for (i=0; i < size; i++) - printf("%02x", ((uchar *)buf)[i]); - } - res=bin2decimal(buf, &a, p, s); - printf(" => res=%d ", res); - print_decimal(&a, orig, res, ex); - printf("\n"); -} - -void test_f2d(double from, int ex) -{ - int res; - - res=double2decimal(from, &a); - printf("%-40.*f => res=%d ", DBL_DIG-2, from, res); - print_decimal(&a, 0, res, ex); - printf("\n"); -} - -void test_ull2d(ulonglong from, const char *orig, int ex) -{ - char s[100]; - int res; - - res=ulonglong2decimal(from, &a); - longlong10_to_str(from,s,10); - printf("%-40s => res=%d ", s, res); - print_decimal(&a, orig, res, ex); - printf("\n"); -} - -void test_ll2d(longlong from, const char *orig, int ex) -{ - char s[100]; - int res; - - res=longlong2decimal(from, &a); - longlong10_to_str(from,s,-10); - printf("%-40s => res=%d ", s, res); - print_decimal(&a, orig, res, ex); - printf("\n"); -} - -void test_d2ull(const char *s, const char *orig, int ex) -{ - char s1[100], *end; - ulonglong x; - int res; - - end= strend(s); - string2decimal(s, &a, &end); - res=decimal2ulonglong(&a, &x); - if (full) dump_decimal(&a); - longlong10_to_str(x,s1,10); - printf("%-40s => res=%d %s\n", s, res, s1); - check_result_code(res, ex); - if (orig && strcmp(orig, s1)) - { - printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); - exit(1); - } -} - -void test_d2ll(const char *s, const char *orig, int ex) -{ - char s1[100], *end; - longlong x; - int res; - - end= strend(s); - string2decimal(s, &a, &end); - res=decimal2longlong(&a, &x); - if (full) dump_decimal(&a); - longlong10_to_str(x,s1,-10); - printf("%-40s => res=%d %s\n", s, res, s1); - check_result_code(res, ex); - if (orig && strcmp(orig, s1)) - { - printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); - exit(1); - } -} - -void test_da(const char *s1, const char *s2, const char *orig, int ex) -{ - char s[100], *end; - int res; - sprintf(s, "'%s' + '%s'", s1, s2); - end= strend(s1); - string2decimal(s1, &a, &end); - end= strend(s2); - string2decimal(s2, &b, &end); - res=decimal_add(&a, &b, &c); - printf("%-40s => res=%d ", s, res); - print_decimal(&c, orig, res, ex); - printf("\n"); -} - -void test_ds(const char *s1, const char *s2, const char *orig, int ex) -{ - char s[100], *end; - int res; - sprintf(s, "'%s' - '%s'", s1, s2); - end= strend(s1); - string2decimal(s1, &a, &end); - end= strend(s2); - string2decimal(s2, &b, &end); - res=decimal_sub(&a, &b, &c); - printf("%-40s => res=%d ", s, res); - print_decimal(&c, orig, res, ex); - printf("\n"); -} - -void test_dc(const char *s1, const char *s2, int orig) -{ - char s[100], *end; - int res; - sprintf(s, "'%s' <=> '%s'", s1, s2); - end= strend(s1); - string2decimal(s1, &a, &end); - end= strend(s2); - string2decimal(s2, &b, &end); - res=decimal_cmp(&a, &b); - printf("%-40s => res=%d\n", s, res); - if (orig != res) - { - printf("\n^^^^^^^^^^^^^ must've been %d\n", orig); - exit(1); - } -} - -void test_dm(const char *s1, const char *s2, const char *orig, int ex) -{ - char s[100], *end; - int res; - sprintf(s, "'%s' * '%s'", s1, s2); - end= strend(s1); - string2decimal(s1, &a, &end); - end= strend(s2); - string2decimal(s2, &b, &end); - res=decimal_mul(&a, &b, &c); - printf("%-40s => res=%d ", s, res); - print_decimal(&c, orig, res, ex); - printf("\n"); -} - -void test_dv(const char *s1, const char *s2, const char *orig, int ex) -{ - char s[100], *end; - int res; - sprintf(s, "'%s' / '%s'", s1, s2); - end= strend(s1); - string2decimal(s1, &a, &end); - end= strend(s2); - string2decimal(s2, &b, &end); - res=decimal_div(&a, &b, &c, 5); - printf("%-40s => res=%d ", s, res); - check_result_code(res, ex); - if (res == E_DEC_DIV_ZERO) - printf("E_DEC_DIV_ZERO"); - else - print_decimal(&c, orig, res, ex); - printf("\n"); -} - -void test_md(const char *s1, const char *s2, const char *orig, int ex) -{ - char s[100], *end; - int res; - sprintf(s, "'%s' %% '%s'", s1, s2); - end= strend(s1); - string2decimal(s1, &a, &end); - end= strend(s2); - string2decimal(s2, &b, &end); - res=decimal_mod(&a, &b, &c); - printf("%-40s => res=%d ", s, res); - check_result_code(res, ex); - if (res == E_DEC_DIV_ZERO) - printf("E_DEC_DIV_ZERO"); - else - print_decimal(&c, orig, res, ex); - printf("\n"); -} - -const char *round_mode[]= -{"TRUNCATE", "HALF_EVEN", "HALF_UP", "CEILING", "FLOOR"}; - -void test_ro(const char *s1, int n, decimal_round_mode mode, const char *orig, - int ex) -{ - char s[100], *end; - int res; - sprintf(s, "'%s', %d, %s", s1, n, round_mode[mode]); - end= strend(s1); - string2decimal(s1, &a, &end); - res=decimal_round(&a, &b, n, mode); - printf("%-40s => res=%d ", s, res); - print_decimal(&b, orig, res, ex); - printf("\n"); -} - - -void test_mx(int precision, int frac, const char *orig) -{ - char s[100]; - sprintf(s, "%d, %d", precision, frac); - max_decimal(precision, frac, &a); - printf("%-40s => ", s); - print_decimal(&a, orig, 0, 0); - printf("\n"); -} - - -void test_pr(const char *s1, int prec, int dec, char filler, const char *orig, - int ex) -{ - char s[100], *end; - char s2[100]; - int slen= sizeof(s2); - int res; - - sprintf(s, filler ? "'%s', %d, %d, '%c'" : "'%s', %d, %d, '\\0'", - s1, prec, dec, filler); - end= strend(s1); - string2decimal(s1, &a, &end); - res= decimal2string(&a, s2, &slen, prec, dec, filler); - printf("%-40s => res=%d '%s'", s, res, s2); - check_result_code(res, ex); - if (orig && strcmp(orig, s2)) - { - printf("\n^^^^^^^^^^^^^ must've been '%s'\n", orig); - exit(1); - } - printf("\n"); -} - - -void test_sh(const char *s1, int shift, const char *orig, int ex) -{ - char s[100], *end; - int res; - sprintf(s, "'%s' %s %d", s1, ((shift < 0) ? ">>" : "<<"), abs(shift)); - end= strend(s1); - string2decimal(s1, &a, &end); - res= decimal_shift(&a, shift); - printf("%-40s => res=%d ", s, res); - print_decimal(&a, orig, res, ex); - printf("\n"); -} - - -void test_fr(const char *s1, const char *orig) -{ - char s[100], *end; - sprintf(s, "'%s'", s1); - printf("%-40s => ", s); - end= strend(s1); - string2decimal(s1, &a, &end); - a.frac= decimal_actual_fraction(&a); - print_decimal(&a, orig, 0, 0); - printf("\n"); -} - - -int main() -{ - a.buf=(void*)buf1; - a.len=sizeof(buf1)/sizeof(dec1); - b.buf=(void*)buf2; - b.len=sizeof(buf2)/sizeof(dec1); - c.buf=(void*)buf3; - c.len=sizeof(buf3)/sizeof(dec1); - - if (full) - test_d2s(); - - printf("==== string2decimal ====\n"); - test_s2d("12345", "12345", 0); - test_s2d("12345.", "12345", 0); - test_s2d("123.45", "123.45", 0); - test_s2d("-123.45", "-123.45", 0); - test_s2d(".00012345000098765", "0.00012345000098765", 0); - test_s2d(".12345000098765", "0.12345000098765", 0); - test_s2d("-.000000012345000098765", "-0.000000012345000098765", 0); - test_s2d("1234500009876.5", "1234500009876.5", 0); - a.len=1; - test_s2d("123450000098765", "98765", 2); - test_s2d("123450.000098765", "123450", 1); - a.len=sizeof(buf1)/sizeof(dec1); - test_s2d("123E5", "12300000", 0); - test_s2d("123E-2", "1.23", 0); - - printf("==== decimal2double ====\n"); - test_d2f("12345", 0); - test_d2f("123.45", 0); - test_d2f("-123.45", 0); - test_d2f("0.00012345000098765", 0); - test_d2f("1234500009876.5", 0); - - printf("==== double2decimal ====\n"); - test_f2d(12345, 0); - test_f2d(1.0/3, 0); - test_f2d(-123.45, 0); - test_f2d(0.00012345000098765, 0); - test_f2d(1234500009876.5, 0); - - printf("==== ulonglong2decimal ====\n"); - test_ull2d(ULL(12345), "12345", 0); - test_ull2d(ULL(0), "0", 0); - test_ull2d(ULL(18446744073709551615), "18446744073709551615", 0); - - printf("==== decimal2ulonglong ====\n"); - test_d2ull("12345", "12345", 0); - test_d2ull("0", "0", 0); - test_d2ull("18446744073709551615", "18446744073709551615", 0); - test_d2ull("18446744073709551616", "18446744073", 2); - test_d2ull("-1", "0", 2); - test_d2ull("1.23", "1", 1); - test_d2ull("9999999999999999999999999.000", "9999999999999999", 2); - - printf("==== longlong2decimal ====\n"); - test_ll2d(LL(-12345), "-12345", 0); - test_ll2d(LL(-1), "-1", 0); - test_ll2d(LL(-9223372036854775807), "-9223372036854775807", 0); - test_ll2d(ULL(9223372036854775808), "-9223372036854775808", 0); - - printf("==== decimal2longlong ====\n"); - test_d2ll("18446744073709551615", "18446744073", 2); - test_d2ll("-1", "-1", 0); - test_d2ll("-1.23", "-1", 1); - test_d2ll("-9223372036854775807", "-9223372036854775807", 0); - test_d2ll("-9223372036854775808", "-9223372036854775808", 0); - test_d2ll("9223372036854775808", "9223372036854775807", 2); - - printf("==== do_add ====\n"); - test_da(".00012345000098765" ,"123.45", "123.45012345000098765", 0); - test_da(".1" ,".45", "0.55", 0); - test_da("1234500009876.5" ,".00012345000098765", "1234500009876.50012345000098765", 0); - test_da("9999909999999.5" ,".555", "9999910000000.055", 0); - test_da("99999999" ,"1", "100000000", 0); - test_da("989999999" ,"1", "990000000", 0); - test_da("999999999" ,"1", "1000000000", 0); - test_da("12345" ,"123.45", "12468.45", 0); - test_da("-12345" ,"-123.45", "-12468.45", 0); - test_ds("-12345" ,"123.45", "-12468.45", 0); - test_ds("12345" ,"-123.45", "12468.45", 0); - - printf("==== do_sub ====\n"); - test_ds(".00012345000098765", "123.45","-123.44987654999901235", 0); - test_ds("1234500009876.5", ".00012345000098765","1234500009876.49987654999901235", 0); - test_ds("9999900000000.5", ".555","9999899999999.945", 0); - test_ds("1111.5551", "1111.555","0.0001", 0); - test_ds(".555", ".555","0", 0); - test_ds("10000000", "1","9999999", 0); - test_ds("1000001000", ".1","1000000999.9", 0); - test_ds("1000000000", ".1","999999999.9", 0); - test_ds("12345", "123.45","12221.55", 0); - test_ds("-12345", "-123.45","-12221.55", 0); - test_da("-12345", "123.45","-12221.55", 0); - test_da("12345", "-123.45","12221.55", 0); - test_ds("123.45", "12345","-12221.55", 0); - test_ds("-123.45", "-12345","12221.55", 0); - test_da("123.45", "-12345","-12221.55", 0); - test_da("-123.45", "12345","12221.55", 0); - test_da("5", "-6.0","-1.0", 0); - - printf("==== decimal_mul ====\n"); - test_dm("12", "10","120", 0); - test_dm("-123.456", "98765.4321","-12193185.1853376", 0); - test_dm("-123456000000", "98765432100000","-12193185185337600000000000", 0); - test_dm("123456", "987654321","121931851853376", 0); - test_dm("123456", "9876543210","1219318518533760", 0); - test_dm("123", "0.01","1.23", 0); - test_dm("123", "0","0", 0); - - printf("==== decimal_div ====\n"); - test_dv("120", "10","12.000000000", 0); - test_dv("123", "0.01","12300.000000000", 0); - test_dv("120", "100000000000.00000","0.000000001200000000", 0); - test_dv("123", "0","", 4); - test_dv("0", "0", "", 4); - test_dv("-12193185.1853376", "98765.4321","-123.456000000000000000", 0); - test_dv("121931851853376", "987654321","123456.000000000", 0); - test_dv("0", "987","0", 0); - test_dv("1", "3","0.333333333", 0); - test_dv("1.000000000000", "3","0.333333333333333333", 0); - test_dv("1", "1","1.000000000", 0); - test_dv("0.0123456789012345678912345", "9999999999","0.000000000001234567890246913578148141", 0); - test_dv("10.333000000", "12.34500","0.837019036046982584042122316", 0); - test_dv("10.000000000060", "2","5.000000000030000000", 0); - - printf("==== decimal_mod ====\n"); - test_md("234","10","4", 0); - test_md("234.567","10.555","2.357", 0); - test_md("-234.567","10.555","-2.357", 0); - test_md("234.567","-10.555","2.357", 0); - c.buf[1]=0x3ABECA; - test_md("99999999999999999999999999999999999999","3","0", 0); - if (c.buf[1] != 0x3ABECA) - { - printf("%X - overflow\n", c.buf[1]); - exit(1); - } - - printf("==== decimal2bin/bin2decimal ====\n"); - test_d2b2d("-10.55", 4, 2,"-10.55", 0); - test_d2b2d("0.0123456789012345678912345", 30, 25,"0.0123456789012345678912345", 0); - test_d2b2d("12345", 5, 0,"12345", 0); - test_d2b2d("12345", 10, 3,"12345.000", 0); - test_d2b2d("123.45", 10, 3,"123.450", 0); - test_d2b2d("-123.45", 20, 10,"-123.4500000000", 0); - test_d2b2d(".00012345000098765", 15, 14,"0.00012345000098", 0); - test_d2b2d(".00012345000098765", 22, 20,"0.00012345000098765000", 0); - test_d2b2d(".12345000098765", 30, 20,"0.12345000098765000000", 0); - test_d2b2d("-.000000012345000098765", 30, 20,"-0.00000001234500009876", 0); - test_d2b2d("1234500009876.5", 30, 5,"1234500009876.50000", 0); - test_d2b2d("111111111.11", 10, 2,"11111111.11", 0); - test_d2b2d("000000000.01", 7, 3,"0.010", 0); - test_d2b2d("123.4", 10, 2, "123.40", 0); - - - printf("==== decimal_cmp ====\n"); - test_dc("12","13",-1); - test_dc("13","12",1); - test_dc("-10","10",-1); - test_dc("10","-10",1); - test_dc("-12","-13",1); - test_dc("0","12",-1); - test_dc("-10","0",-1); - test_dc("4","4",0); - - printf("==== decimal_round ====\n"); - test_ro("5678.123451",-4,TRUNCATE,"0", 0); - test_ro("5678.123451",-3,TRUNCATE,"5000", 0); - test_ro("5678.123451",-2,TRUNCATE,"5600", 0); - test_ro("5678.123451",-1,TRUNCATE,"5670", 0); - test_ro("5678.123451",0,TRUNCATE,"5678", 0); - test_ro("5678.123451",1,TRUNCATE,"5678.1", 0); - test_ro("5678.123451",2,TRUNCATE,"5678.12", 0); - test_ro("5678.123451",3,TRUNCATE,"5678.123", 0); - test_ro("5678.123451",4,TRUNCATE,"5678.1234", 0); - test_ro("5678.123451",5,TRUNCATE,"5678.12345", 0); - test_ro("5678.123451",6,TRUNCATE,"5678.123451", 0); - test_ro("-5678.123451",-4,TRUNCATE,"0", 0); - memset(buf2, 33, sizeof(buf2)); - test_ro("99999999999999999999999999999999999999",-31,TRUNCATE,"99999990000000000000000000000000000000", 0); - test_ro("15.1",0,HALF_UP,"15", 0); - test_ro("15.5",0,HALF_UP,"16", 0); - test_ro("15.9",0,HALF_UP,"16", 0); - test_ro("-15.1",0,HALF_UP,"-15", 0); - test_ro("-15.5",0,HALF_UP,"-16", 0); - test_ro("-15.9",0,HALF_UP,"-16", 0); - test_ro("15.1",1,HALF_UP,"15.1", 0); - test_ro("-15.1",1,HALF_UP,"-15.1", 0); - test_ro("15.17",1,HALF_UP,"15.2", 0); - test_ro("15.4",-1,HALF_UP,"20", 0); - test_ro("-15.4",-1,HALF_UP,"-20", 0); - test_ro("5.4",-1,HALF_UP,"10", 0); - test_ro(".999", 0, HALF_UP, "1", 0); - memset(buf2, 33, sizeof(buf2)); - test_ro("999999999", -9, HALF_UP, "1000000000", 0); - test_ro("15.1",0,HALF_EVEN,"15", 0); - test_ro("15.5",0,HALF_EVEN,"16", 0); - test_ro("14.5",0,HALF_EVEN,"14", 0); - test_ro("15.9",0,HALF_EVEN,"16", 0); - test_ro("15.1",0,CEILING,"16", 0); - test_ro("-15.1",0,CEILING,"-15", 0); - test_ro("15.1",0,FLOOR,"15", 0); - test_ro("-15.1",0,FLOOR,"-16", 0); - test_ro("999999999999999999999.999", 0, CEILING,"1000000000000000000000", 0); - test_ro("-999999999999999999999.999", 0, FLOOR,"-1000000000000000000000", 0); - - b.buf[0]=DIG_BASE+1; - b.buf++; - test_ro(".3", 0, HALF_UP, "0", 0); - b.buf--; - if (b.buf[0] != DIG_BASE+1) - { - printf("%d - underflow\n", b.buf[0]); - exit(1); - } - - printf("==== max_decimal ====\n"); - test_mx(1,1,"0.9"); - test_mx(1,0,"9"); - test_mx(2,1,"9.9"); - test_mx(4,2,"99.99"); - test_mx(6,3,"999.999"); - test_mx(8,4,"9999.9999"); - test_mx(10,5,"99999.99999"); - test_mx(12,6,"999999.999999"); - test_mx(14,7,"9999999.9999999"); - test_mx(16,8,"99999999.99999999"); - test_mx(18,9,"999999999.999999999"); - test_mx(20,10,"9999999999.9999999999"); - test_mx(20,20,"0.99999999999999999999"); - test_mx(20,0,"99999999999999999999"); - test_mx(40,20,"99999999999999999999.99999999999999999999"); - - printf("==== decimal2string ====\n"); - test_pr("123.123", 0, 0, 0, "123.123", 0); - test_pr("123.123", 7, 3, '0', "123.123", 0); - test_pr("123.123", 9, 3, '0', "00123.123", 0); - test_pr("123.123", 9, 4, '0', "0123.1230", 0); - test_pr("123.123", 9, 5, '0', "123.12300", 0); - test_pr("123.123", 9, 2, '0', "000123.12", 1); - test_pr("123.123", 9, 6, '0', "23.123000", 2); - - printf("==== decimal_shift ====\n"); - test_sh("123.123", 1, "1231.23", 0); - test_sh("123457189.123123456789000", 1, "1234571891.23123456789", 0); - test_sh("123457189.123123456789000", 4, "1234571891231.23456789", 0); - test_sh("123457189.123123456789000", 8, "12345718912312345.6789", 0); - test_sh("123457189.123123456789000", 9, "123457189123123456.789", 0); - test_sh("123457189.123123456789000", 10, "1234571891231234567.89", 0); - test_sh("123457189.123123456789000", 17, "12345718912312345678900000", 0); - test_sh("123457189.123123456789000", 18, "123457189123123456789000000", 0); - test_sh("123457189.123123456789000", 19, "1234571891231234567890000000", 0); - test_sh("123457189.123123456789000", 26, "12345718912312345678900000000000000", 0); - test_sh("123457189.123123456789000", 27, "123457189123123456789000000000000000", 0); - test_sh("123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0); - test_sh("000000000000000000000000123457189.123123456789000", 26, "12345718912312345678900000000000000", 0); - test_sh("00000000123457189.123123456789000", 27, "123457189123123456789000000000000000", 0); - test_sh("00000000000000000123457189.123123456789000", 28, "1234571891231234567890000000000000000", 0); - test_sh("123", 1, "1230", 0); - test_sh("123", 10, "1230000000000", 0); - test_sh(".123", 1, "1.23", 0); - test_sh(".123", 10, "1230000000", 0); - test_sh(".123", 14, "12300000000000", 0); - test_sh("000.000", 1000, "0", 0); - test_sh("000.", 1000, "0", 0); - test_sh(".000", 1000, "0", 0); - test_sh("1", 1000, "1", 2); - test_sh("123.123", -1, "12.3123", 0); - test_sh("123987654321.123456789000", -1, "12398765432.1123456789", 0); - test_sh("123987654321.123456789000", -2, "1239876543.21123456789", 0); - test_sh("123987654321.123456789000", -3, "123987654.321123456789", 0); - test_sh("123987654321.123456789000", -8, "1239.87654321123456789", 0); - test_sh("123987654321.123456789000", -9, "123.987654321123456789", 0); - test_sh("123987654321.123456789000", -10, "12.3987654321123456789", 0); - test_sh("123987654321.123456789000", -11, "1.23987654321123456789", 0); - test_sh("123987654321.123456789000", -12, "0.123987654321123456789", 0); - test_sh("123987654321.123456789000", -13, "0.0123987654321123456789", 0); - test_sh("123987654321.123456789000", -14, "0.00123987654321123456789", 0); - test_sh("00000087654321.123456789000", -14, "0.00000087654321123456789", 0); - a.len= 2; - test_sh("123.123", -2, "1.23123", 0); - test_sh("123.123", -3, "0.123123", 0); - test_sh("123.123", -6, "0.000123123", 0); - test_sh("123.123", -7, "0.0000123123", 0); - test_sh("123.123", -15, "0.000000000000123123", 0); - test_sh("123.123", -16, "0.000000000000012312", 1); - test_sh("123.123", -17, "0.000000000000001231", 1); - test_sh("123.123", -18, "0.000000000000000123", 1); - test_sh("123.123", -19, "0.000000000000000012", 1); - test_sh("123.123", -20, "0.000000000000000001", 1); - test_sh("123.123", -21, "0", 1); - test_sh(".000000000123", -1, "0.0000000000123", 0); - test_sh(".000000000123", -6, "0.000000000000000123", 0); - test_sh(".000000000123", -7, "0.000000000000000012", 1); - test_sh(".000000000123", -8, "0.000000000000000001", 1); - test_sh(".000000000123", -9, "0", 1); - test_sh(".000000000123", 1, "0.00000000123", 0); - test_sh(".000000000123", 8, "0.0123", 0); - test_sh(".000000000123", 9, "0.123", 0); - test_sh(".000000000123", 10, "1.23", 0); - test_sh(".000000000123", 17, "12300000", 0); - test_sh(".000000000123", 18, "123000000", 0); - test_sh(".000000000123", 19, "1230000000", 0); - test_sh(".000000000123", 20, "12300000000", 0); - test_sh(".000000000123", 21, "123000000000", 0); - test_sh(".000000000123", 22, "1230000000000", 0); - test_sh(".000000000123", 23, "12300000000000", 0); - test_sh(".000000000123", 24, "123000000000000", 0); - test_sh(".000000000123", 25, "1230000000000000", 0); - test_sh(".000000000123", 26, "12300000000000000", 0); - test_sh(".000000000123", 27, "123000000000000000", 0); - test_sh(".000000000123", 28, "0.000000000123", 2); - test_sh("123456789.987654321", -1, "12345678.998765432", 1); - test_sh("123456789.987654321", -2, "1234567.899876543", 1); - test_sh("123456789.987654321", -8, "1.234567900", 1); - test_sh("123456789.987654321", -9, "0.123456789987654321", 0); - test_sh("123456789.987654321", -10, "0.012345678998765432", 1); - test_sh("123456789.987654321", -17, "0.000000001234567900", 1); - test_sh("123456789.987654321", -18, "0.000000000123456790", 1); - test_sh("123456789.987654321", -19, "0.000000000012345679", 1); - test_sh("123456789.987654321", -26, "0.000000000000000001", 1); - test_sh("123456789.987654321", -27, "0", 1); - test_sh("123456789.987654321", 1, "1234567900", 1); - test_sh("123456789.987654321", 2, "12345678999", 1); - test_sh("123456789.987654321", 4, "1234567899877", 1); - test_sh("123456789.987654321", 8, "12345678998765432", 1); - test_sh("123456789.987654321", 9, "123456789987654321", 0); - test_sh("123456789.987654321", 10, "123456789.987654321", 2); - test_sh("123456789.987654321", 0, "123456789.987654321", 0); - a.len= sizeof(buf1)/sizeof(dec1); - - printf("==== decimal_actual_fraction ====\n"); - test_fr("1.123456789000000000", "1.123456789"); - test_fr("1.12345678000000000", "1.12345678"); - test_fr("1.1234567000000000", "1.1234567"); - test_fr("1.123456000000000", "1.123456"); - test_fr("1.12345000000000", "1.12345"); - test_fr("1.1234000000000", "1.1234"); - test_fr("1.123000000000", "1.123"); - test_fr("1.12000000000", "1.12"); - test_fr("1.1000000000", "1.1"); - test_fr("1.000000000", "1"); - test_fr("1.0", "1"); - test_fr("10000000000000000000.0", "10000000000000000000"); - - return 0; -} -#endif |