diff options
Diffstat (limited to 'deps/recastnavigation/Detour/Source')
-rw-r--r-- | deps/recastnavigation/Detour/Source/DetourAlloc.cpp | 50 | ||||
-rw-r--r-- | deps/recastnavigation/Detour/Source/DetourCommon.cpp | 388 | ||||
-rw-r--r-- | deps/recastnavigation/Detour/Source/DetourNavMesh.cpp | 1522 | ||||
-rw-r--r-- | deps/recastnavigation/Detour/Source/DetourNavMeshBuilder.cpp | 777 | ||||
-rw-r--r-- | deps/recastnavigation/Detour/Source/DetourNavMeshQuery.cpp | 3664 | ||||
-rw-r--r-- | deps/recastnavigation/Detour/Source/DetourNode.cpp | 200 |
6 files changed, 6601 insertions, 0 deletions
diff --git a/deps/recastnavigation/Detour/Source/DetourAlloc.cpp b/deps/recastnavigation/Detour/Source/DetourAlloc.cpp new file mode 100644 index 0000000000..d9ad1fc013 --- /dev/null +++ b/deps/recastnavigation/Detour/Source/DetourAlloc.cpp @@ -0,0 +1,50 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include <stdlib.h> +#include "DetourAlloc.h" + +static void *dtAllocDefault(size_t size, dtAllocHint) +{ + return malloc(size); +} + +static void dtFreeDefault(void *ptr) +{ + free(ptr); +} + +static dtAllocFunc* sAllocFunc = dtAllocDefault; +static dtFreeFunc* sFreeFunc = dtFreeDefault; + +void dtAllocSetCustom(dtAllocFunc *allocFunc, dtFreeFunc *freeFunc) +{ + sAllocFunc = allocFunc ? allocFunc : dtAllocDefault; + sFreeFunc = freeFunc ? freeFunc : dtFreeDefault; +} + +void* dtAlloc(size_t size, dtAllocHint hint) +{ + return sAllocFunc(size, hint); +} + +void dtFree(void* ptr) +{ + if (ptr) + sFreeFunc(ptr); +} diff --git a/deps/recastnavigation/Detour/Source/DetourCommon.cpp b/deps/recastnavigation/Detour/Source/DetourCommon.cpp new file mode 100644 index 0000000000..26fe65c178 --- /dev/null +++ b/deps/recastnavigation/Detour/Source/DetourCommon.cpp @@ -0,0 +1,388 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include "DetourCommon.h" +#include "DetourMath.h" + +////////////////////////////////////////////////////////////////////////////////////////// + +void dtClosestPtPointTriangle(float* closest, const float* p, + const float* a, const float* b, const float* c) +{ + // Check if P in vertex region outside A + float ab[3], ac[3], ap[3]; + dtVsub(ab, b, a); + dtVsub(ac, c, a); + dtVsub(ap, p, a); + float d1 = dtVdot(ab, ap); + float d2 = dtVdot(ac, ap); + if (d1 <= 0.0f && d2 <= 0.0f) + { + // barycentric coordinates (1,0,0) + dtVcopy(closest, a); + return; + } + + // Check if P in vertex region outside B + float bp[3]; + dtVsub(bp, p, b); + float d3 = dtVdot(ab, bp); + float d4 = dtVdot(ac, bp); + if (d3 >= 0.0f && d4 <= d3) + { + // barycentric coordinates (0,1,0) + dtVcopy(closest, b); + return; + } + + // Check if P in edge region of AB, if so return projection of P onto AB + float vc = d1*d4 - d3*d2; + if (vc <= 0.0f && d1 >= 0.0f && d3 <= 0.0f) + { + // barycentric coordinates (1-v,v,0) + float v = d1 / (d1 - d3); + closest[0] = a[0] + v * ab[0]; + closest[1] = a[1] + v * ab[1]; + closest[2] = a[2] + v * ab[2]; + return; + } + + // Check if P in vertex region outside C + float cp[3]; + dtVsub(cp, p, c); + float d5 = dtVdot(ab, cp); + float d6 = dtVdot(ac, cp); + if (d6 >= 0.0f && d5 <= d6) + { + // barycentric coordinates (0,0,1) + dtVcopy(closest, c); + return; + } + + // Check if P in edge region of AC, if so return projection of P onto AC + float vb = d5*d2 - d1*d6; + if (vb <= 0.0f && d2 >= 0.0f && d6 <= 0.0f) + { + // barycentric coordinates (1-w,0,w) + float w = d2 / (d2 - d6); + closest[0] = a[0] + w * ac[0]; + closest[1] = a[1] + w * ac[1]; + closest[2] = a[2] + w * ac[2]; + return; + } + + // Check if P in edge region of BC, if so return projection of P onto BC + float va = d3*d6 - d5*d4; + if (va <= 0.0f && (d4 - d3) >= 0.0f && (d5 - d6) >= 0.0f) + { + // barycentric coordinates (0,1-w,w) + float w = (d4 - d3) / ((d4 - d3) + (d5 - d6)); + closest[0] = b[0] + w * (c[0] - b[0]); + closest[1] = b[1] + w * (c[1] - b[1]); + closest[2] = b[2] + w * (c[2] - b[2]); + return; + } + + // P inside face region. Compute Q through its barycentric coordinates (u,v,w) + float denom = 1.0f / (va + vb + vc); + float v = vb * denom; + float w = vc * denom; + closest[0] = a[0] + ab[0] * v + ac[0] * w; + closest[1] = a[1] + ab[1] * v + ac[1] * w; + closest[2] = a[2] + ab[2] * v + ac[2] * w; +} + +bool dtIntersectSegmentPoly2D(const float* p0, const float* p1, + const float* verts, int nverts, + float& tmin, float& tmax, + int& segMin, int& segMax) +{ + static const float EPS = 0.00000001f; + + tmin = 0; + tmax = 1; + segMin = -1; + segMax = -1; + + float dir[3]; + dtVsub(dir, p1, p0); + + for (int i = 0, j = nverts-1; i < nverts; j=i++) + { + float edge[3], diff[3]; + dtVsub(edge, &verts[i*3], &verts[j*3]); + dtVsub(diff, p0, &verts[j*3]); + const float n = dtVperp2D(edge, diff); + const float d = dtVperp2D(dir, edge); + if (fabsf(d) < EPS) + { + // S is nearly parallel to this edge + if (n < 0) + return false; + else + continue; + } + const float t = n / d; + if (d < 0) + { + // segment S is entering across this edge + if (t > tmin) + { + tmin = t; + segMin = j; + // S enters after leaving polygon + if (tmin > tmax) + return false; + } + } + else + { + // segment S is leaving across this edge + if (t < tmax) + { + tmax = t; + segMax = j; + // S leaves before entering polygon + if (tmax < tmin) + return false; + } + } + } + + return true; +} + +float dtDistancePtSegSqr2D(const float* pt, const float* p, const float* q, float& t) +{ + float pqx = q[0] - p[0]; + float pqz = q[2] - p[2]; + float dx = pt[0] - p[0]; + float dz = pt[2] - p[2]; + float d = pqx*pqx + pqz*pqz; + t = pqx*dx + pqz*dz; + if (d > 0) t /= d; + if (t < 0) t = 0; + else if (t > 1) t = 1; + dx = p[0] + t*pqx - pt[0]; + dz = p[2] + t*pqz - pt[2]; + return dx*dx + dz*dz; +} + +void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const float* verts) +{ + tc[0] = 0.0f; + tc[1] = 0.0f; + tc[2] = 0.0f; + for (int j = 0; j < nidx; ++j) + { + const float* v = &verts[idx[j]*3]; + tc[0] += v[0]; + tc[1] += v[1]; + tc[2] += v[2]; + } + const float s = 1.0f / nidx; + tc[0] *= s; + tc[1] *= s; + tc[2] *= s; +} + +bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h) +{ + float v0[3], v1[3], v2[3]; + dtVsub(v0, c,a); + dtVsub(v1, b,a); + dtVsub(v2, p,a); + + const float dot00 = dtVdot2D(v0, v0); + const float dot01 = dtVdot2D(v0, v1); + const float dot02 = dtVdot2D(v0, v2); + const float dot11 = dtVdot2D(v1, v1); + const float dot12 = dtVdot2D(v1, v2); + + // Compute barycentric coordinates + const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01); + const float u = (dot11 * dot02 - dot01 * dot12) * invDenom; + const float v = (dot00 * dot12 - dot01 * dot02) * invDenom; + + // The (sloppy) epsilon is needed to allow to get height of points which + // are interpolated along the edges of the triangles. + static const float EPS = 1e-4f; + + // If point lies inside the triangle, return interpolated ycoord. + if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS) + { + h = a[1] + v0[1]*u + v1[1]*v; + return true; + } + + return false; +} + +/// @par +/// +/// All points are projected onto the xz-plane, so the y-values are ignored. +bool dtPointInPolygon(const float* pt, const float* verts, const int nverts) +{ + // TODO: Replace pnpoly with triArea2D tests? + int i, j; + bool c = false; + for (i = 0, j = nverts-1; i < nverts; j = i++) + { + const float* vi = &verts[i*3]; + const float* vj = &verts[j*3]; + if (((vi[2] > pt[2]) != (vj[2] > pt[2])) && + (pt[0] < (vj[0]-vi[0]) * (pt[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) + c = !c; + } + return c; +} + +bool dtDistancePtPolyEdgesSqr(const float* pt, const float* verts, const int nverts, + float* ed, float* et) +{ + // TODO: Replace pnpoly with triArea2D tests? + int i, j; + bool c = false; + for (i = 0, j = nverts-1; i < nverts; j = i++) + { + const float* vi = &verts[i*3]; + const float* vj = &verts[j*3]; + if (((vi[2] > pt[2]) != (vj[2] > pt[2])) && + (pt[0] < (vj[0]-vi[0]) * (pt[2]-vi[2]) / (vj[2]-vi[2]) + vi[0]) ) + c = !c; + ed[j] = dtDistancePtSegSqr2D(pt, vj, vi, et[j]); + } + return c; +} + +static void projectPoly(const float* axis, const float* poly, const int npoly, + float& rmin, float& rmax) +{ + rmin = rmax = dtVdot2D(axis, &poly[0]); + for (int i = 1; i < npoly; ++i) + { + const float d = dtVdot2D(axis, &poly[i*3]); + rmin = dtMin(rmin, d); + rmax = dtMax(rmax, d); + } +} + +inline bool overlapRange(const float amin, const float amax, + const float bmin, const float bmax, + const float eps) +{ + return ((amin+eps) > bmax || (amax-eps) < bmin) ? false : true; +} + +/// @par +/// +/// All vertices are projected onto the xz-plane, so the y-values are ignored. +bool dtOverlapPolyPoly2D(const float* polya, const int npolya, + const float* polyb, const int npolyb) +{ + const float eps = 1e-4f; + + for (int i = 0, j = npolya-1; i < npolya; j=i++) + { + const float* va = &polya[j*3]; + const float* vb = &polya[i*3]; + const float n[3] = { vb[2]-va[2], 0, -(vb[0]-va[0]) }; + float amin,amax,bmin,bmax; + projectPoly(n, polya, npolya, amin,amax); + projectPoly(n, polyb, npolyb, bmin,bmax); + if (!overlapRange(amin,amax, bmin,bmax, eps)) + { + // Found separating axis + return false; + } + } + for (int i = 0, j = npolyb-1; i < npolyb; j=i++) + { + const float* va = &polyb[j*3]; + const float* vb = &polyb[i*3]; + const float n[3] = { vb[2]-va[2], 0, -(vb[0]-va[0]) }; + float amin,amax,bmin,bmax; + projectPoly(n, polya, npolya, amin,amax); + projectPoly(n, polyb, npolyb, bmin,bmax); + if (!overlapRange(amin,amax, bmin,bmax, eps)) + { + // Found separating axis + return false; + } + } + return true; +} + +// Returns a random point in a convex polygon. +// Adapted from Graphics Gems article. +void dtRandomPointInConvexPoly(const float* pts, const int npts, float* areas, + const float s, const float t, float* out) +{ + // Calc triangle araes + float areasum = 0.0f; + for (int i = 2; i < npts; i++) { + areas[i] = dtTriArea2D(&pts[0], &pts[(i-1)*3], &pts[i*3]); + areasum += dtMax(0.001f, areas[i]); + } + // Find sub triangle weighted by area. + const float thr = s*areasum; + float acc = 0.0f; + float u = 0.0f; + int tri = 0; + for (int i = 2; i < npts; i++) { + const float dacc = areas[i]; + if (thr >= acc && thr < (acc+dacc)) + { + u = (thr - acc) / dacc; + tri = i; + break; + } + acc += dacc; + } + + float v = dtMathSqrtf(t); + + const float a = 1 - v; + const float b = (1 - u) * v; + const float c = u * v; + const float* pa = &pts[0]; + const float* pb = &pts[(tri-1)*3]; + const float* pc = &pts[tri*3]; + + out[0] = a*pa[0] + b*pb[0] + c*pc[0]; + out[1] = a*pa[1] + b*pb[1] + c*pc[1]; + out[2] = a*pa[2] + b*pb[2] + c*pc[2]; +} + +inline float vperpXZ(const float* a, const float* b) { return a[0]*b[2] - a[2]*b[0]; } + +bool dtIntersectSegSeg2D(const float* ap, const float* aq, + const float* bp, const float* bq, + float& s, float& t) +{ + float u[3], v[3], w[3]; + dtVsub(u,aq,ap); + dtVsub(v,bq,bp); + dtVsub(w,ap,bp); + float d = vperpXZ(u,v); + if (fabsf(d) < 1e-6f) return false; + s = vperpXZ(v,w) / d; + t = vperpXZ(u,w) / d; + return true; +} + diff --git a/deps/recastnavigation/Detour/Source/DetourNavMesh.cpp b/deps/recastnavigation/Detour/Source/DetourNavMesh.cpp new file mode 100644 index 0000000000..f70fa04729 --- /dev/null +++ b/deps/recastnavigation/Detour/Source/DetourNavMesh.cpp @@ -0,0 +1,1522 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include <float.h> +#include <string.h> +#include <stdio.h> +#include "DetourNavMesh.h" +#include "DetourNode.h" +#include "DetourCommon.h" +#include "DetourMath.h" +#include "DetourAlloc.h" +#include "DetourAssert.h" +#include <new> + + +inline bool overlapSlabs(const float* amin, const float* amax, + const float* bmin, const float* bmax, + const float px, const float py) +{ + // Check for horizontal overlap. + // The segment is shrunken a little so that slabs which touch + // at end points are not connected. + const float minx = dtMax(amin[0]+px,bmin[0]+px); + const float maxx = dtMin(amax[0]-px,bmax[0]-px); + if (minx > maxx) + return false; + + // Check vertical overlap. + const float ad = (amax[1]-amin[1]) / (amax[0]-amin[0]); + const float ak = amin[1] - ad*amin[0]; + const float bd = (bmax[1]-bmin[1]) / (bmax[0]-bmin[0]); + const float bk = bmin[1] - bd*bmin[0]; + const float aminy = ad*minx + ak; + const float amaxy = ad*maxx + ak; + const float bminy = bd*minx + bk; + const float bmaxy = bd*maxx + bk; + const float dmin = bminy - aminy; + const float dmax = bmaxy - amaxy; + + // Crossing segments always overlap. + if (dmin*dmax < 0) + return true; + + // Check for overlap at endpoints. + const float thr = dtSqr(py*2); + if (dmin*dmin <= thr || dmax*dmax <= thr) + return true; + + return false; +} + +static float getSlabCoord(const float* va, const int side) +{ + if (side == 0 || side == 4) + return va[0]; + else if (side == 2 || side == 6) + return va[2]; + return 0; +} + +static void calcSlabEndPoints(const float* va, const float* vb, float* bmin, float* bmax, const int side) +{ + if (side == 0 || side == 4) + { + if (va[2] < vb[2]) + { + bmin[0] = va[2]; + bmin[1] = va[1]; + bmax[0] = vb[2]; + bmax[1] = vb[1]; + } + else + { + bmin[0] = vb[2]; + bmin[1] = vb[1]; + bmax[0] = va[2]; + bmax[1] = va[1]; + } + } + else if (side == 2 || side == 6) + { + if (va[0] < vb[0]) + { + bmin[0] = va[0]; + bmin[1] = va[1]; + bmax[0] = vb[0]; + bmax[1] = vb[1]; + } + else + { + bmin[0] = vb[0]; + bmin[1] = vb[1]; + bmax[0] = va[0]; + bmax[1] = va[1]; + } + } +} + +inline int computeTileHash(int x, int y, const int mask) +{ + const unsigned int h1 = 0x8da6b343; // Large multiplicative constants; + const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes + unsigned int n = h1 * x + h2 * y; + return (int)(n & mask); +} + +inline unsigned int allocLink(dtMeshTile* tile) +{ + if (tile->linksFreeList == DT_NULL_LINK) + return DT_NULL_LINK; + unsigned int link = tile->linksFreeList; + tile->linksFreeList = tile->links[link].next; + return link; +} + +inline void freeLink(dtMeshTile* tile, unsigned int link) +{ + tile->links[link].next = tile->linksFreeList; + tile->linksFreeList = link; +} + + +dtNavMesh* dtAllocNavMesh() +{ + void* mem = dtAlloc(sizeof(dtNavMesh), DT_ALLOC_PERM); + if (!mem) return 0; + return new(mem) dtNavMesh; +} + +/// @par +/// +/// This function will only free the memory for tiles with the #DT_TILE_FREE_DATA +/// flag set. +void dtFreeNavMesh(dtNavMesh* navmesh) +{ + if (!navmesh) return; + navmesh->~dtNavMesh(); + dtFree(navmesh); +} + +////////////////////////////////////////////////////////////////////////////////////////// + +/** +@class dtNavMesh + +The navigation mesh consists of one or more tiles defining three primary types of structural data: + +A polygon mesh which defines most of the navigation graph. (See rcPolyMesh for its structure.) +A detail mesh used for determining surface height on the polygon mesh. (See rcPolyMeshDetail for its structure.) +Off-mesh connections, which define custom point-to-point edges within the navigation graph. + +The general build process is as follows: + +-# Create rcPolyMesh and rcPolyMeshDetail data using the Recast build pipeline. +-# Optionally, create off-mesh connection data. +-# Combine the source data into a dtNavMeshCreateParams structure. +-# Create a tile data array using dtCreateNavMeshData(). +-# Allocate at dtNavMesh object and initialize it. (For single tile navigation meshes, + the tile data is loaded during this step.) +-# For multi-tile navigation meshes, load the tile data using dtNavMesh::addTile(). + +Notes: + +- This class is usually used in conjunction with the dtNavMeshQuery class for pathfinding. +- Technically, all navigation meshes are tiled. A 'solo' mesh is simply a navigation mesh initialized + to have only a single tile. +- This class does not implement any asynchronous methods. So the ::dtStatus result of all methods will + always contain either a success or failure flag. + +@see dtNavMeshQuery, dtCreateNavMeshData, dtNavMeshCreateParams, #dtAllocNavMesh, #dtFreeNavMesh +*/ + +dtNavMesh::dtNavMesh() : + m_tileWidth(0), + m_tileHeight(0), + m_maxTiles(0), + m_tileLutSize(0), + m_tileLutMask(0), + m_posLookup(0), + m_nextFree(0), + m_tiles(0) +{ +#ifndef DT_POLYREF64 + m_saltBits = 0; + m_tileBits = 0; + m_polyBits = 0; +#endif + memset(&m_params, 0, sizeof(dtNavMeshParams)); + m_orig[0] = 0; + m_orig[1] = 0; + m_orig[2] = 0; +} + +dtNavMesh::~dtNavMesh() +{ + for (int i = 0; i < m_maxTiles; ++i) + { + if (m_tiles[i].flags & DT_TILE_FREE_DATA) + { + dtFree(m_tiles[i].data); + m_tiles[i].data = 0; + m_tiles[i].dataSize = 0; + } + } + dtFree(m_posLookup); + dtFree(m_tiles); +} + +dtStatus dtNavMesh::init(const dtNavMeshParams* params) +{ + memcpy(&m_params, params, sizeof(dtNavMeshParams)); + dtVcopy(m_orig, params->orig); + m_tileWidth = params->tileWidth; + m_tileHeight = params->tileHeight; + + // Init tiles + m_maxTiles = params->maxTiles; + m_tileLutSize = dtNextPow2(params->maxTiles/4); + if (!m_tileLutSize) m_tileLutSize = 1; + m_tileLutMask = m_tileLutSize-1; + + m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM); + if (!m_tiles) + return DT_FAILURE | DT_OUT_OF_MEMORY; + m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM); + if (!m_posLookup) + return DT_FAILURE | DT_OUT_OF_MEMORY; + memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles); + memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize); + m_nextFree = 0; + for (int i = m_maxTiles-1; i >= 0; --i) + { + m_tiles[i].salt = 1; + m_tiles[i].next = m_nextFree; + m_nextFree = &m_tiles[i]; + } + + // Init ID generator values. +#ifndef DT_POLYREF64 + m_tileBits = dtIlog2(dtNextPow2((unsigned int)params->maxTiles)); + m_polyBits = dtIlog2(dtNextPow2((unsigned int)params->maxPolys)); + // Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow. + m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits - m_polyBits); + + if (m_saltBits < 10) + return DT_FAILURE | DT_INVALID_PARAM; +#endif + + return DT_SUCCESS; +} + +dtStatus dtNavMesh::init(unsigned char* data, const int dataSize, const int flags) +{ + // Make sure the data is in right format. + dtMeshHeader* header = (dtMeshHeader*)data; + if (header->magic != DT_NAVMESH_MAGIC) + return DT_FAILURE | DT_WRONG_MAGIC; + if (header->version != DT_NAVMESH_VERSION) + return DT_FAILURE | DT_WRONG_VERSION; + + dtNavMeshParams params; + dtVcopy(params.orig, header->bmin); + params.tileWidth = header->bmax[0] - header->bmin[0]; + params.tileHeight = header->bmax[2] - header->bmin[2]; + params.maxTiles = 1; + params.maxPolys = header->polyCount; + + dtStatus status = init(¶ms); + if (dtStatusFailed(status)) + return status; + + return addTile(data, dataSize, flags, 0, 0); +} + +/// @par +/// +/// @note The parameters are created automatically when the single tile +/// initialization is performed. +const dtNavMeshParams* dtNavMesh::getParams() const +{ + return &m_params; +} + +////////////////////////////////////////////////////////////////////////////////////////// +int dtNavMesh::findConnectingPolys(const float* va, const float* vb, + const dtMeshTile* tile, int side, + dtPolyRef* con, float* conarea, int maxcon) const +{ + if (!tile) return 0; + + float amin[2], amax[2]; + calcSlabEndPoints(va, vb, amin, amax, side); + const float apos = getSlabCoord(va, side); + + // Remove links pointing to 'side' and compact the links array. + float bmin[2], bmax[2]; + unsigned short m = DT_EXT_LINK | (unsigned short)side; + int n = 0; + + dtPolyRef base = getPolyRefBase(tile); + + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* poly = &tile->polys[i]; + const int nv = poly->vertCount; + for (int j = 0; j < nv; ++j) + { + // Skip edges which do not point to the right side. + if (poly->neis[j] != m) continue; + + const float* vc = &tile->verts[poly->verts[j]*3]; + const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3]; + const float bpos = getSlabCoord(vc, side); + + // Segments are not close enough. + if (dtAbs(apos-bpos) > 0.01f) + continue; + + // Check if the segments touch. + calcSlabEndPoints(vc,vd, bmin,bmax, side); + + if (!overlapSlabs(amin,amax, bmin,bmax, 0.01f, tile->header->walkableClimb)) continue; + + // Add return value. + if (n < maxcon) + { + conarea[n*2+0] = dtMax(amin[0], bmin[0]); + conarea[n*2+1] = dtMin(amax[0], bmax[0]); + con[n] = base | (dtPolyRef)i; + n++; + } + break; + } + } + return n; +} + +void dtNavMesh::unconnectLinks(dtMeshTile* tile, dtMeshTile* target) +{ + if (!tile || !target) return; + + const unsigned int targetNum = decodePolyIdTile(getTileRef(target)); + + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* poly = &tile->polys[i]; + unsigned int j = poly->firstLink; + unsigned int pj = DT_NULL_LINK; + while (j != DT_NULL_LINK) + { + if (decodePolyIdTile(tile->links[j].ref) == targetNum) + { + // Remove link. + unsigned int nj = tile->links[j].next; + if (pj == DT_NULL_LINK) + poly->firstLink = nj; + else + tile->links[pj].next = nj; + freeLink(tile, j); + j = nj; + } + else + { + // Advance + pj = j; + j = tile->links[j].next; + } + } + } +} + +void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side) +{ + if (!tile) return; + + // Connect border links. + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* poly = &tile->polys[i]; + + // Create new links. +// unsigned short m = DT_EXT_LINK | (unsigned short)side; + + const int nv = poly->vertCount; + for (int j = 0; j < nv; ++j) + { + // Skip non-portal edges. + if ((poly->neis[j] & DT_EXT_LINK) == 0) + continue; + + const int dir = (int)(poly->neis[j] & 0xff); + if (side != -1 && dir != side) + continue; + + // Create new links + const float* va = &tile->verts[poly->verts[j]*3]; + const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3]; + dtPolyRef nei[4]; + float neia[4*2]; + int nnei = findConnectingPolys(va,vb, target, dtOppositeTile(dir), nei,neia,4); + for (int k = 0; k < nnei; ++k) + { + unsigned int idx = allocLink(tile); + if (idx != DT_NULL_LINK) + { + dtLink* link = &tile->links[idx]; + link->ref = nei[k]; + link->edge = (unsigned char)j; + link->side = (unsigned char)dir; + + link->next = poly->firstLink; + poly->firstLink = idx; + + // Compress portal limits to a byte value. + if (dir == 0 || dir == 4) + { + float tmin = (neia[k*2+0]-va[2]) / (vb[2]-va[2]); + float tmax = (neia[k*2+1]-va[2]) / (vb[2]-va[2]); + if (tmin > tmax) + dtSwap(tmin,tmax); + link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f); + link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f); + } + else if (dir == 2 || dir == 6) + { + float tmin = (neia[k*2+0]-va[0]) / (vb[0]-va[0]); + float tmax = (neia[k*2+1]-va[0]) / (vb[0]-va[0]); + if (tmin > tmax) + dtSwap(tmin,tmax); + link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f); + link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f); + } + } + } + } + } +} + +void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side) +{ + if (!tile) return; + + // Connect off-mesh links. + // We are interested on links which land from target tile to this tile. + const unsigned char oppositeSide = (side == -1) ? 0xff : (unsigned char)dtOppositeTile(side); + + for (int i = 0; i < target->header->offMeshConCount; ++i) + { + dtOffMeshConnection* targetCon = &target->offMeshCons[i]; + if (targetCon->side != oppositeSide) + continue; + + dtPoly* targetPoly = &target->polys[targetCon->poly]; + // Skip off-mesh connections which start location could not be connected at all. + if (targetPoly->firstLink == DT_NULL_LINK) + continue; + + const float ext[3] = { targetCon->rad, target->header->walkableClimb, targetCon->rad }; + + // Find polygon to connect to. + const float* p = &targetCon->pos[3]; + float nearestPt[3]; + dtPolyRef ref = findNearestPolyInTile(tile, p, ext, nearestPt); + if (!ref) + continue; + // findNearestPoly may return too optimistic results, further check to make sure. + if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(targetCon->rad)) + continue; + // Make sure the location is on current mesh. + float* v = &target->verts[targetPoly->verts[1]*3]; + dtVcopy(v, nearestPt); + + // Link off-mesh connection to target poly. + unsigned int idx = allocLink(target); + if (idx != DT_NULL_LINK) + { + dtLink* link = &target->links[idx]; + link->ref = ref; + link->edge = (unsigned char)1; + link->side = oppositeSide; + link->bmin = link->bmax = 0; + // Add to linked list. + link->next = targetPoly->firstLink; + targetPoly->firstLink = idx; + } + + // Link target poly to off-mesh connection. + if (targetCon->flags & DT_OFFMESH_CON_BIDIR) + { + unsigned int tidx = allocLink(tile); + if (tidx != DT_NULL_LINK) + { + const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); + dtPoly* landPoly = &tile->polys[landPolyIdx]; + dtLink* link = &tile->links[tidx]; + link->ref = getPolyRefBase(target) | (dtPolyRef)(targetCon->poly); + link->edge = 0xff; + link->side = (unsigned char)(side == -1 ? 0xff : side); + link->bmin = link->bmax = 0; + // Add to linked list. + link->next = landPoly->firstLink; + landPoly->firstLink = tidx; + } + } + } + +} + +void dtNavMesh::connectIntLinks(dtMeshTile* tile) +{ + if (!tile) return; + + dtPolyRef base = getPolyRefBase(tile); + + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* poly = &tile->polys[i]; + poly->firstLink = DT_NULL_LINK; + + if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + + // Build edge links backwards so that the links will be + // in the linked list from lowest index to highest. + for (int j = poly->vertCount-1; j >= 0; --j) + { + // Skip hard and non-internal edges. + if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue; + + unsigned int idx = allocLink(tile); + if (idx != DT_NULL_LINK) + { + dtLink* link = &tile->links[idx]; + link->ref = base | (dtPolyRef)(poly->neis[j]-1); + link->edge = (unsigned char)j; + link->side = 0xff; + link->bmin = link->bmax = 0; + // Add to linked list. + link->next = poly->firstLink; + poly->firstLink = idx; + } + } + } +} + +void dtNavMesh::baseOffMeshLinks(dtMeshTile* tile) +{ + if (!tile) return; + + dtPolyRef base = getPolyRefBase(tile); + + // Base off-mesh connection start points. + for (int i = 0; i < tile->header->offMeshConCount; ++i) + { + dtOffMeshConnection* con = &tile->offMeshCons[i]; + dtPoly* poly = &tile->polys[con->poly]; + + const float ext[3] = { con->rad, tile->header->walkableClimb, con->rad }; + + // Find polygon to connect to. + const float* p = &con->pos[0]; // First vertex + float nearestPt[3]; + dtPolyRef ref = findNearestPolyInTile(tile, p, ext, nearestPt); + if (!ref) continue; + // findNearestPoly may return too optimistic results, further check to make sure. + if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(con->rad)) + continue; + // Make sure the location is on current mesh. + float* v = &tile->verts[poly->verts[0]*3]; + dtVcopy(v, nearestPt); + + // Link off-mesh connection to target poly. + unsigned int idx = allocLink(tile); + if (idx != DT_NULL_LINK) + { + dtLink* link = &tile->links[idx]; + link->ref = ref; + link->edge = (unsigned char)0; + link->side = 0xff; + link->bmin = link->bmax = 0; + // Add to linked list. + link->next = poly->firstLink; + poly->firstLink = idx; + } + + // Start end-point is always connect back to off-mesh connection. + unsigned int tidx = allocLink(tile); + if (tidx != DT_NULL_LINK) + { + const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref); + dtPoly* landPoly = &tile->polys[landPolyIdx]; + dtLink* link = &tile->links[tidx]; + link->ref = base | (dtPolyRef)(con->poly); + link->edge = 0xff; + link->side = 0xff; + link->bmin = link->bmax = 0; + // Add to linked list. + link->next = landPoly->firstLink; + landPoly->firstLink = tidx; + } + } +} + +void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const +{ + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + getTileAndPolyByRefUnsafe(ref, &tile, &poly); + + // Off-mesh connections don't have detail polygons. + if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + { + const float* v0 = &tile->verts[poly->verts[0]*3]; + const float* v1 = &tile->verts[poly->verts[1]*3]; + const float d0 = dtVdist(pos, v0); + const float d1 = dtVdist(pos, v1); + const float u = d0 / (d0+d1); + dtVlerp(closest, v0, v1, u); + if (posOverPoly) + *posOverPoly = false; + return; + } + + const unsigned int ip = (unsigned int)(poly - tile->polys); + const dtPolyDetail* pd = &tile->detailMeshes[ip]; + + // Clamp point to be inside the polygon. + float verts[DT_VERTS_PER_POLYGON*3]; + float edged[DT_VERTS_PER_POLYGON]; + float edget[DT_VERTS_PER_POLYGON]; + const int nv = poly->vertCount; + for (int i = 0; i < nv; ++i) + dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]); + + dtVcopy(closest, pos); + if (!dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget)) + { + // Point is outside the polygon, dtClamp to nearest edge. + float dmin = edged[0]; + int imin = 0; + for (int i = 1; i < nv; ++i) + { + if (edged[i] < dmin) + { + dmin = edged[i]; + imin = i; + } + } + const float* va = &verts[imin*3]; + const float* vb = &verts[((imin+1)%nv)*3]; + dtVlerp(closest, va, vb, edget[imin]); + + if (posOverPoly) + *posOverPoly = false; + } + else + { + if (posOverPoly) + *posOverPoly = true; + } + + // Find height at the location. + for (int j = 0; j < pd->triCount; ++j) + { + const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4]; + const float* v[3]; + for (int k = 0; k < 3; ++k) + { + if (t[k] < poly->vertCount) + v[k] = &tile->verts[poly->verts[t[k]]*3]; + else + v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3]; + } + float h; + if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h)) + { + closest[1] = h; + break; + } + } +} + +dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile, + const float* center, const float* extents, + float* nearestPt) const +{ + float bmin[3], bmax[3]; + dtVsub(bmin, center, extents); + dtVadd(bmax, center, extents); + + // Get nearby polygons from proximity grid. + dtPolyRef polys[128]; + int polyCount = queryPolygonsInTile(tile, bmin, bmax, polys, 128); + + // Find nearest polygon amongst the nearby polygons. + dtPolyRef nearest = 0; + float nearestDistanceSqr = FLT_MAX; + for (int i = 0; i < polyCount; ++i) + { + dtPolyRef ref = polys[i]; + float closestPtPoly[3]; + float diff[3]; + bool posOverPoly = false; + float d; + closestPointOnPoly(ref, center, closestPtPoly, &posOverPoly); + + // If a point is directly over a polygon and closer than + // climb height, favor that instead of straight line nearest point. + dtVsub(diff, center, closestPtPoly); + if (posOverPoly) + { + d = dtAbs(diff[1]) - tile->header->walkableClimb; + d = d > 0 ? d*d : 0; + } + else + { + d = dtVlenSqr(diff); + } + + if (d < nearestDistanceSqr) + { + dtVcopy(nearestPt, closestPtPoly); + nearestDistanceSqr = d; + nearest = ref; + } + } + + return nearest; +} + +int dtNavMesh::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax, + dtPolyRef* polys, const int maxPolys) const +{ + if (tile->bvTree) + { + const dtBVNode* node = &tile->bvTree[0]; + const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount]; + const float* tbmin = tile->header->bmin; + const float* tbmax = tile->header->bmax; + const float qfac = tile->header->bvQuantFactor; + + // Calculate quantized box + unsigned short bmin[3], bmax[3]; + // dtClamp query box to world box. + float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0]; + float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1]; + float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2]; + float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0]; + float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1]; + float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2]; + // Quantize + bmin[0] = (unsigned short)(qfac * minx) & 0xfffe; + bmin[1] = (unsigned short)(qfac * miny) & 0xfffe; + bmin[2] = (unsigned short)(qfac * minz) & 0xfffe; + bmax[0] = (unsigned short)(qfac * maxx + 1) | 1; + bmax[1] = (unsigned short)(qfac * maxy + 1) | 1; + bmax[2] = (unsigned short)(qfac * maxz + 1) | 1; + + // Traverse tree + dtPolyRef base = getPolyRefBase(tile); + int n = 0; + while (node < end) + { + const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax); + const bool isLeafNode = node->i >= 0; + + if (isLeafNode && overlap) + { + if (n < maxPolys) + polys[n++] = base | (dtPolyRef)node->i; + } + + if (overlap || isLeafNode) + node++; + else + { + const int escapeIndex = -node->i; + node += escapeIndex; + } + } + + return n; + } + else + { + float bmin[3], bmax[3]; + int n = 0; + dtPolyRef base = getPolyRefBase(tile); + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* p = &tile->polys[i]; + // Do not return off-mesh connection polygons. + if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + // Calc polygon bounds. + const float* v = &tile->verts[p->verts[0]*3]; + dtVcopy(bmin, v); + dtVcopy(bmax, v); + for (int j = 1; j < p->vertCount; ++j) + { + v = &tile->verts[p->verts[j]*3]; + dtVmin(bmin, v); + dtVmax(bmax, v); + } + if (dtOverlapBounds(qmin,qmax, bmin,bmax)) + { + if (n < maxPolys) + polys[n++] = base | (dtPolyRef)i; + } + } + return n; + } +} + +/// @par +/// +/// The add operation will fail if the data is in the wrong format, the allocated tile +/// space is full, or there is a tile already at the specified reference. +/// +/// The lastRef parameter is used to restore a tile with the same tile +/// reference it had previously used. In this case the #dtPolyRef's for the +/// tile will be restored to the same values they were before the tile was +/// removed. +/// +/// The nav mesh assumes exclusive access to the data passed and will make +/// changes to the dynamic portion of the data. For that reason the data +/// should not be reused in other nav meshes until the tile has been successfully +/// removed from this nav mesh. +/// +/// @see dtCreateNavMeshData, #removeTile +dtStatus dtNavMesh::addTile(unsigned char* data, int dataSize, int flags, + dtTileRef lastRef, dtTileRef* result) +{ + // Make sure the data is in right format. + dtMeshHeader* header = (dtMeshHeader*)data; + if (header->magic != DT_NAVMESH_MAGIC) + return DT_FAILURE | DT_WRONG_MAGIC; + if (header->version != DT_NAVMESH_VERSION) + return DT_FAILURE | DT_WRONG_VERSION; + + // Make sure the location is free. + if (getTileAt(header->x, header->y, header->layer)) + return DT_FAILURE; + + // Allocate a tile. + dtMeshTile* tile = 0; + if (!lastRef) + { + if (m_nextFree) + { + tile = m_nextFree; + m_nextFree = tile->next; + tile->next = 0; + } + } + else + { + // Try to relocate the tile to specific index with same salt. + int tileIndex = (int)decodePolyIdTile((dtPolyRef)lastRef); + if (tileIndex >= m_maxTiles) + return DT_FAILURE | DT_OUT_OF_MEMORY; + // Try to find the specific tile id from the free list. + dtMeshTile* target = &m_tiles[tileIndex]; + dtMeshTile* prev = 0; + tile = m_nextFree; + while (tile && tile != target) + { + prev = tile; + tile = tile->next; + } + // Could not find the correct location. + if (tile != target) + return DT_FAILURE | DT_OUT_OF_MEMORY; + // Remove from freelist + if (!prev) + m_nextFree = tile->next; + else + prev->next = tile->next; + + // Restore salt. + tile->salt = decodePolyIdSalt((dtPolyRef)lastRef); + } + + // Make sure we could allocate a tile. + if (!tile) + return DT_FAILURE | DT_OUT_OF_MEMORY; + + // Insert tile into the position lut. + int h = computeTileHash(header->x, header->y, m_tileLutMask); + tile->next = m_posLookup[h]; + m_posLookup[h] = tile; + + // Patch header pointers. + const int headerSize = dtAlign4(sizeof(dtMeshHeader)); + const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount); + const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount); + const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount)); + const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount); + const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount); + const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount); + const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount); + const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount); + + unsigned char* d = data + headerSize; + tile->verts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize); + tile->polys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize); + tile->links = dtGetThenAdvanceBufferPointer<dtLink>(d, linksSize); + tile->detailMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize); + tile->detailVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize); + tile->detailTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize); + tile->bvTree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvtreeSize); + tile->offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshLinksSize); + + // If there are no items in the bvtree, reset the tree pointer. + if (!bvtreeSize) + tile->bvTree = 0; + + // Build links freelist + tile->linksFreeList = 0; + tile->links[header->maxLinkCount-1].next = DT_NULL_LINK; + for (int i = 0; i < header->maxLinkCount-1; ++i) + tile->links[i].next = i+1; + + // Init tile. + tile->header = header; + tile->data = data; + tile->dataSize = dataSize; + tile->flags = flags; + + connectIntLinks(tile); + + // Base off-mesh connections to their starting polygons and connect connections inside the tile. + baseOffMeshLinks(tile); + connectExtOffMeshLinks(tile, tile, -1); + + // Create connections with neighbour tiles. + static const int MAX_NEIS = 32; + dtMeshTile* neis[MAX_NEIS]; + int nneis; + + // Connect with layers in current tile. + nneis = getTilesAt(header->x, header->y, neis, MAX_NEIS); + for (int j = 0; j < nneis; ++j) + { + if (neis[j] == tile) + continue; + + connectExtLinks(tile, neis[j], -1); + connectExtLinks(neis[j], tile, -1); + connectExtOffMeshLinks(tile, neis[j], -1); + connectExtOffMeshLinks(neis[j], tile, -1); + } + + // Connect with neighbour tiles. + for (int i = 0; i < 8; ++i) + { + nneis = getNeighbourTilesAt(header->x, header->y, i, neis, MAX_NEIS); + for (int j = 0; j < nneis; ++j) + { + connectExtLinks(tile, neis[j], i); + connectExtLinks(neis[j], tile, dtOppositeTile(i)); + connectExtOffMeshLinks(tile, neis[j], i); + connectExtOffMeshLinks(neis[j], tile, dtOppositeTile(i)); + } + } + + if (result) + *result = getTileRef(tile); + + return DT_SUCCESS; +} + +const dtMeshTile* dtNavMesh::getTileAt(const int x, const int y, const int layer) const +{ + // Find tile based on hash. + int h = computeTileHash(x,y,m_tileLutMask); + dtMeshTile* tile = m_posLookup[h]; + while (tile) + { + if (tile->header && + tile->header->x == x && + tile->header->y == y && + tile->header->layer == layer) + { + return tile; + } + tile = tile->next; + } + return 0; +} + +int dtNavMesh::getNeighbourTilesAt(const int x, const int y, const int side, dtMeshTile** tiles, const int maxTiles) const +{ + int nx = x, ny = y; + switch (side) + { + case 0: nx++; break; + case 1: nx++; ny++; break; + case 2: ny++; break; + case 3: nx--; ny++; break; + case 4: nx--; break; + case 5: nx--; ny--; break; + case 6: ny--; break; + case 7: nx++; ny--; break; + }; + + return getTilesAt(nx, ny, tiles, maxTiles); +} + +int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile** tiles, const int maxTiles) const +{ + int n = 0; + + // Find tile based on hash. + int h = computeTileHash(x,y,m_tileLutMask); + dtMeshTile* tile = m_posLookup[h]; + while (tile) + { + if (tile->header && + tile->header->x == x && + tile->header->y == y) + { + if (n < maxTiles) + tiles[n++] = tile; + } + tile = tile->next; + } + + return n; +} + +/// @par +/// +/// This function will not fail if the tiles array is too small to hold the +/// entire result set. It will simply fill the array to capacity. +int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile const** tiles, const int maxTiles) const +{ + int n = 0; + + // Find tile based on hash. + int h = computeTileHash(x,y,m_tileLutMask); + dtMeshTile* tile = m_posLookup[h]; + while (tile) + { + if (tile->header && + tile->header->x == x && + tile->header->y == y) + { + if (n < maxTiles) + tiles[n++] = tile; + } + tile = tile->next; + } + + return n; +} + + +dtTileRef dtNavMesh::getTileRefAt(const int x, const int y, const int layer) const +{ + // Find tile based on hash. + int h = computeTileHash(x,y,m_tileLutMask); + dtMeshTile* tile = m_posLookup[h]; + while (tile) + { + if (tile->header && + tile->header->x == x && + tile->header->y == y && + tile->header->layer == layer) + { + return getTileRef(tile); + } + tile = tile->next; + } + return 0; +} + +const dtMeshTile* dtNavMesh::getTileByRef(dtTileRef ref) const +{ + if (!ref) + return 0; + unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref); + unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref); + if ((int)tileIndex >= m_maxTiles) + return 0; + const dtMeshTile* tile = &m_tiles[tileIndex]; + if (tile->salt != tileSalt) + return 0; + return tile; +} + +int dtNavMesh::getMaxTiles() const +{ + return m_maxTiles; +} + +dtMeshTile* dtNavMesh::getTile(int i) +{ + return &m_tiles[i]; +} + +const dtMeshTile* dtNavMesh::getTile(int i) const +{ + return &m_tiles[i]; +} + +void dtNavMesh::calcTileLoc(const float* pos, int* tx, int* ty) const +{ + *tx = (int)floorf((pos[0]-m_orig[0]) / m_tileWidth); + *ty = (int)floorf((pos[2]-m_orig[2]) / m_tileHeight); +} + +dtStatus dtNavMesh::getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const +{ + if (!ref) return DT_FAILURE; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + if (ip >= (unsigned int)m_tiles[it].header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + *tile = &m_tiles[it]; + *poly = &m_tiles[it].polys[ip]; + return DT_SUCCESS; +} + +/// @par +/// +/// @warning Only use this function if it is known that the provided polygon +/// reference is valid. This function is faster than #getTileAndPolyByRef, but +/// it does not validate the reference. +void dtNavMesh::getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const +{ + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + *tile = &m_tiles[it]; + *poly = &m_tiles[it].polys[ip]; +} + +bool dtNavMesh::isValidPolyRef(dtPolyRef ref) const +{ + if (!ref) return false; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return false; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false; + if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false; + return true; +} + +/// @par +/// +/// This function returns the data for the tile so that, if desired, +/// it can be added back to the navigation mesh at a later point. +/// +/// @see #addTile +dtStatus dtNavMesh::removeTile(dtTileRef ref, unsigned char** data, int* dataSize) +{ + if (!ref) + return DT_FAILURE | DT_INVALID_PARAM; + unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref); + unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref); + if ((int)tileIndex >= m_maxTiles) + return DT_FAILURE | DT_INVALID_PARAM; + dtMeshTile* tile = &m_tiles[tileIndex]; + if (tile->salt != tileSalt) + return DT_FAILURE | DT_INVALID_PARAM; + + // Remove tile from hash lookup. + int h = computeTileHash(tile->header->x,tile->header->y,m_tileLutMask); + dtMeshTile* prev = 0; + dtMeshTile* cur = m_posLookup[h]; + while (cur) + { + if (cur == tile) + { + if (prev) + prev->next = cur->next; + else + m_posLookup[h] = cur->next; + break; + } + prev = cur; + cur = cur->next; + } + + // Remove connections to neighbour tiles. + static const int MAX_NEIS = 32; + dtMeshTile* neis[MAX_NEIS]; + int nneis; + + // Disconnect from other layers in current tile. + nneis = getTilesAt(tile->header->x, tile->header->y, neis, MAX_NEIS); + for (int j = 0; j < nneis; ++j) + { + if (neis[j] == tile) continue; + unconnectLinks(neis[j], tile); + } + + // Disconnect from neighbour tiles. + for (int i = 0; i < 8; ++i) + { + nneis = getNeighbourTilesAt(tile->header->x, tile->header->y, i, neis, MAX_NEIS); + for (int j = 0; j < nneis; ++j) + unconnectLinks(neis[j], tile); + } + + // Reset tile. + if (tile->flags & DT_TILE_FREE_DATA) + { + // Owns data + dtFree(tile->data); + tile->data = 0; + tile->dataSize = 0; + if (data) *data = 0; + if (dataSize) *dataSize = 0; + } + else + { + if (data) *data = tile->data; + if (dataSize) *dataSize = tile->dataSize; + } + + tile->header = 0; + tile->flags = 0; + tile->linksFreeList = 0; + tile->polys = 0; + tile->verts = 0; + tile->links = 0; + tile->detailMeshes = 0; + tile->detailVerts = 0; + tile->detailTris = 0; + tile->bvTree = 0; + tile->offMeshCons = 0; + + // Update salt, salt should never be zero. +#ifdef DT_POLYREF64 + tile->salt = (tile->salt+1) & ((1<<DT_SALT_BITS)-1); +#else + tile->salt = (tile->salt+1) & ((1<<m_saltBits)-1); +#endif + if (tile->salt == 0) + tile->salt++; + + // Add to free list. + tile->next = m_nextFree; + m_nextFree = tile; + + return DT_SUCCESS; +} + +dtTileRef dtNavMesh::getTileRef(const dtMeshTile* tile) const +{ + if (!tile) return 0; + const unsigned int it = (unsigned int)(tile - m_tiles); + return (dtTileRef)encodePolyId(tile->salt, it, 0); +} + +/// @par +/// +/// Example use case: +/// @code +/// +/// const dtPolyRef base = navmesh->getPolyRefBase(tile); +/// for (int i = 0; i < tile->header->polyCount; ++i) +/// { +/// const dtPoly* p = &tile->polys[i]; +/// const dtPolyRef ref = base | (dtPolyRef)i; +/// +/// // Use the reference to access the polygon data. +/// } +/// @endcode +dtPolyRef dtNavMesh::getPolyRefBase(const dtMeshTile* tile) const +{ + if (!tile) return 0; + const unsigned int it = (unsigned int)(tile - m_tiles); + return encodePolyId(tile->salt, it, 0); +} + +struct dtTileState +{ + int magic; // Magic number, used to identify the data. + int version; // Data version number. + dtTileRef ref; // Tile ref at the time of storing the data. +}; + +struct dtPolyState +{ + unsigned short flags; // Flags (see dtPolyFlags). + unsigned char area; // Area ID of the polygon. +}; + +/// @see #storeTileState +int dtNavMesh::getTileStateSize(const dtMeshTile* tile) const +{ + if (!tile) return 0; + const int headerSize = dtAlign4(sizeof(dtTileState)); + const int polyStateSize = dtAlign4(sizeof(dtPolyState) * tile->header->polyCount); + return headerSize + polyStateSize; +} + +/// @par +/// +/// Tile state includes non-structural data such as polygon flags, area ids, etc. +/// @note The state data is only valid until the tile reference changes. +/// @see #getTileStateSize, #restoreTileState +dtStatus dtNavMesh::storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const +{ + // Make sure there is enough space to store the state. + const int sizeReq = getTileStateSize(tile); + if (maxDataSize < sizeReq) + return DT_FAILURE | DT_BUFFER_TOO_SMALL; + + dtTileState* tileState = dtGetThenAdvanceBufferPointer<dtTileState>(data, dtAlign4(sizeof(dtTileState))); + dtPolyState* polyStates = dtGetThenAdvanceBufferPointer<dtPolyState>(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount)); + + // Store tile state. + tileState->magic = DT_NAVMESH_STATE_MAGIC; + tileState->version = DT_NAVMESH_STATE_VERSION; + tileState->ref = getTileRef(tile); + + // Store per poly state. + for (int i = 0; i < tile->header->polyCount; ++i) + { + const dtPoly* p = &tile->polys[i]; + dtPolyState* s = &polyStates[i]; + s->flags = p->flags; + s->area = p->getArea(); + } + + return DT_SUCCESS; +} + +/// @par +/// +/// Tile state includes non-structural data such as polygon flags, area ids, etc. +/// @note This function does not impact the tile's #dtTileRef and #dtPolyRef's. +/// @see #storeTileState +dtStatus dtNavMesh::restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize) +{ + // Make sure there is enough space to store the state. + const int sizeReq = getTileStateSize(tile); + if (maxDataSize < sizeReq) + return DT_FAILURE | DT_INVALID_PARAM; + + const dtTileState* tileState = dtGetThenAdvanceBufferPointer<const dtTileState>(data, dtAlign4(sizeof(dtTileState))); + const dtPolyState* polyStates = dtGetThenAdvanceBufferPointer<const dtPolyState>(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount)); + + // Check that the restore is possible. + if (tileState->magic != DT_NAVMESH_STATE_MAGIC) + return DT_FAILURE | DT_WRONG_MAGIC; + if (tileState->version != DT_NAVMESH_STATE_VERSION) + return DT_FAILURE | DT_WRONG_VERSION; + if (tileState->ref != getTileRef(tile)) + return DT_FAILURE | DT_INVALID_PARAM; + + // Restore per poly state. + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* p = &tile->polys[i]; + const dtPolyState* s = &polyStates[i]; + p->flags = s->flags; + p->setArea(s->area); + } + + return DT_SUCCESS; +} + +/// @par +/// +/// Off-mesh connections are stored in the navigation mesh as special 2-vertex +/// polygons with a single edge. At least one of the vertices is expected to be +/// inside a normal polygon. So an off-mesh connection is "entered" from a +/// normal polygon at one of its endpoints. This is the polygon identified by +/// the prevRef parameter. +dtStatus dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const +{ + unsigned int salt, it, ip; + + if (!polyRef) + return DT_FAILURE; + + // Get current polygon + decodePolyId(polyRef, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + const dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + const dtPoly* poly = &tile->polys[ip]; + + // Make sure that the current poly is indeed off-mesh link. + if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION) + return DT_FAILURE; + + // Figure out which way to hand out the vertices. + int idx0 = 0, idx1 = 1; + + // Find link that points to first vertex. + for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next) + { + if (tile->links[i].edge == 0) + { + if (tile->links[i].ref != prevRef) + { + idx0 = 1; + idx1 = 0; + } + break; + } + } + + dtVcopy(startPos, &tile->verts[poly->verts[idx0]*3]); + dtVcopy(endPos, &tile->verts[poly->verts[idx1]*3]); + + return DT_SUCCESS; +} + + +const dtOffMeshConnection* dtNavMesh::getOffMeshConnectionByRef(dtPolyRef ref) const +{ + unsigned int salt, it, ip; + + if (!ref) + return 0; + + // Get current polygon + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return 0; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0; + const dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return 0; + const dtPoly* poly = &tile->polys[ip]; + + // Make sure that the current poly is indeed off-mesh link. + if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION) + return 0; + + const unsigned int idx = ip - tile->header->offMeshBase; + dtAssert(idx < (unsigned int)tile->header->offMeshConCount); + return &tile->offMeshCons[idx]; +} + + +dtStatus dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags) +{ + if (!ref) return DT_FAILURE; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + dtPoly* poly = &tile->polys[ip]; + + // Change flags. + poly->flags = flags; + + return DT_SUCCESS; +} + +dtStatus dtNavMesh::getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const +{ + if (!ref) return DT_FAILURE; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + const dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + const dtPoly* poly = &tile->polys[ip]; + + *resultFlags = poly->flags; + + return DT_SUCCESS; +} + +dtStatus dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area) +{ + if (!ref) return DT_FAILURE; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + dtPoly* poly = &tile->polys[ip]; + + poly->setArea(area); + + return DT_SUCCESS; +} + +dtStatus dtNavMesh::getPolyArea(dtPolyRef ref, unsigned char* resultArea) const +{ + if (!ref) return DT_FAILURE; + unsigned int salt, it, ip; + decodePolyId(ref, salt, it, ip); + if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM; + if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM; + const dtMeshTile* tile = &m_tiles[it]; + if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM; + const dtPoly* poly = &tile->polys[ip]; + + *resultArea = poly->getArea(); + + return DT_SUCCESS; +} + diff --git a/deps/recastnavigation/Detour/Source/DetourNavMeshBuilder.cpp b/deps/recastnavigation/Detour/Source/DetourNavMeshBuilder.cpp new file mode 100644 index 0000000000..965e6cdc5c --- /dev/null +++ b/deps/recastnavigation/Detour/Source/DetourNavMeshBuilder.cpp @@ -0,0 +1,777 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <float.h> +#include "DetourNavMesh.h" +#include "DetourCommon.h" +#include "DetourMath.h" +#include "DetourNavMeshBuilder.h" +#include "DetourAlloc.h" +#include "DetourAssert.h" + +static unsigned short MESH_NULL_IDX = 0xffff; + + +struct BVItem +{ + unsigned short bmin[3]; + unsigned short bmax[3]; + int i; +}; + +static int compareItemX(const void* va, const void* vb) +{ + const BVItem* a = (const BVItem*)va; + const BVItem* b = (const BVItem*)vb; + if (a->bmin[0] < b->bmin[0]) + return -1; + if (a->bmin[0] > b->bmin[0]) + return 1; + return 0; +} + +static int compareItemY(const void* va, const void* vb) +{ + const BVItem* a = (const BVItem*)va; + const BVItem* b = (const BVItem*)vb; + if (a->bmin[1] < b->bmin[1]) + return -1; + if (a->bmin[1] > b->bmin[1]) + return 1; + return 0; +} + +static int compareItemZ(const void* va, const void* vb) +{ + const BVItem* a = (const BVItem*)va; + const BVItem* b = (const BVItem*)vb; + if (a->bmin[2] < b->bmin[2]) + return -1; + if (a->bmin[2] > b->bmin[2]) + return 1; + return 0; +} + +static void calcExtends(BVItem* items, const int /*nitems*/, const int imin, const int imax, + unsigned short* bmin, unsigned short* bmax) +{ + bmin[0] = items[imin].bmin[0]; + bmin[1] = items[imin].bmin[1]; + bmin[2] = items[imin].bmin[2]; + + bmax[0] = items[imin].bmax[0]; + bmax[1] = items[imin].bmax[1]; + bmax[2] = items[imin].bmax[2]; + + for (int i = imin+1; i < imax; ++i) + { + const BVItem& it = items[i]; + if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0]; + if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1]; + if (it.bmin[2] < bmin[2]) bmin[2] = it.bmin[2]; + + if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0]; + if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1]; + if (it.bmax[2] > bmax[2]) bmax[2] = it.bmax[2]; + } +} + +inline int longestAxis(unsigned short x, unsigned short y, unsigned short z) +{ + int axis = 0; + unsigned short maxVal = x; + if (y > maxVal) + { + axis = 1; + maxVal = y; + } + if (z > maxVal) + { + axis = 2; + } + return axis; +} + +static void subdivide(BVItem* items, int nitems, int imin, int imax, int& curNode, dtBVNode* nodes) +{ + int inum = imax - imin; + int icur = curNode; + + dtBVNode& node = nodes[curNode++]; + + if (inum == 1) + { + // Leaf + node.bmin[0] = items[imin].bmin[0]; + node.bmin[1] = items[imin].bmin[1]; + node.bmin[2] = items[imin].bmin[2]; + + node.bmax[0] = items[imin].bmax[0]; + node.bmax[1] = items[imin].bmax[1]; + node.bmax[2] = items[imin].bmax[2]; + + node.i = items[imin].i; + } + else + { + // Split + calcExtends(items, nitems, imin, imax, node.bmin, node.bmax); + + int axis = longestAxis(node.bmax[0] - node.bmin[0], + node.bmax[1] - node.bmin[1], + node.bmax[2] - node.bmin[2]); + + if (axis == 0) + { + // Sort along x-axis + qsort(items+imin, inum, sizeof(BVItem), compareItemX); + } + else if (axis == 1) + { + // Sort along y-axis + qsort(items+imin, inum, sizeof(BVItem), compareItemY); + } + else + { + // Sort along z-axis + qsort(items+imin, inum, sizeof(BVItem), compareItemZ); + } + + int isplit = imin+inum/2; + + // Left + subdivide(items, nitems, imin, isplit, curNode, nodes); + // Right + subdivide(items, nitems, isplit, imax, curNode, nodes); + + int iescape = curNode - icur; + // Negative index means escape. + node.i = -iescape; + } +} + +static int createBVTree(const unsigned short* verts, const int /*nverts*/, + const unsigned short* polys, const int npolys, const int nvp, + const float cs, const float ch, + const int /*nnodes*/, dtBVNode* nodes) +{ + // Build tree + BVItem* items = (BVItem*)dtAlloc(sizeof(BVItem)*npolys, DT_ALLOC_TEMP); + for (int i = 0; i < npolys; i++) + { + BVItem& it = items[i]; + it.i = i; + // Calc polygon bounds. + const unsigned short* p = &polys[i*nvp*2]; + it.bmin[0] = it.bmax[0] = verts[p[0]*3+0]; + it.bmin[1] = it.bmax[1] = verts[p[0]*3+1]; + it.bmin[2] = it.bmax[2] = verts[p[0]*3+2]; + + for (int j = 1; j < nvp; ++j) + { + if (p[j] == MESH_NULL_IDX) break; + unsigned short x = verts[p[j]*3+0]; + unsigned short y = verts[p[j]*3+1]; + unsigned short z = verts[p[j]*3+2]; + + if (x < it.bmin[0]) it.bmin[0] = x; + if (y < it.bmin[1]) it.bmin[1] = y; + if (z < it.bmin[2]) it.bmin[2] = z; + + if (x > it.bmax[0]) it.bmax[0] = x; + if (y > it.bmax[1]) it.bmax[1] = y; + if (z > it.bmax[2]) it.bmax[2] = z; + } + // Remap y + it.bmin[1] = (unsigned short)dtMathFloorf((float)it.bmin[1]*ch/cs); + it.bmax[1] = (unsigned short)dtMathCeilf((float)it.bmax[1]*ch/cs); + } + + int curNode = 0; + subdivide(items, npolys, 0, npolys, curNode, nodes); + + dtFree(items); + + return curNode; +} + +static unsigned char classifyOffMeshPoint(const float* pt, const float* bmin, const float* bmax) +{ + static const unsigned char XP = 1<<0; + static const unsigned char ZP = 1<<1; + static const unsigned char XM = 1<<2; + static const unsigned char ZM = 1<<3; + + unsigned char outcode = 0; + outcode |= (pt[0] >= bmax[0]) ? XP : 0; + outcode |= (pt[2] >= bmax[2]) ? ZP : 0; + outcode |= (pt[0] < bmin[0]) ? XM : 0; + outcode |= (pt[2] < bmin[2]) ? ZM : 0; + + switch (outcode) + { + case XP: return 0; + case XP|ZP: return 1; + case ZP: return 2; + case XM|ZP: return 3; + case XM: return 4; + case XM|ZM: return 5; + case ZM: return 6; + case XP|ZM: return 7; + }; + + return 0xff; +} + +// TODO: Better error handling. + +/// @par +/// +/// The output data array is allocated using the detour allocator (dtAlloc()). The method +/// used to free the memory will be determined by how the tile is added to the navigation +/// mesh. +/// +/// @see dtNavMesh, dtNavMesh::addTile() +bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize) +{ + if (params->nvp > DT_VERTS_PER_POLYGON) + return false; + if (params->vertCount >= 0xffff) + return false; + if (!params->vertCount || !params->verts) + return false; + if (!params->polyCount || !params->polys) + return false; + + const int nvp = params->nvp; + + // Classify off-mesh connection points. We store only the connections + // whose start point is inside the tile. + unsigned char* offMeshConClass = 0; + int storedOffMeshConCount = 0; + int offMeshConLinkCount = 0; + + if (params->offMeshConCount > 0) + { + offMeshConClass = (unsigned char*)dtAlloc(sizeof(unsigned char)*params->offMeshConCount*2, DT_ALLOC_TEMP); + if (!offMeshConClass) + return false; + + // Find tight heigh bounds, used for culling out off-mesh start locations. + float hmin = FLT_MAX; + float hmax = -FLT_MAX; + + if (params->detailVerts && params->detailVertsCount) + { + for (int i = 0; i < params->detailVertsCount; ++i) + { + const float h = params->detailVerts[i*3+1]; + hmin = dtMin(hmin,h); + hmax = dtMax(hmax,h); + } + } + else + { + for (int i = 0; i < params->vertCount; ++i) + { + const unsigned short* iv = ¶ms->verts[i*3]; + const float h = params->bmin[1] + iv[1] * params->ch; + hmin = dtMin(hmin,h); + hmax = dtMax(hmax,h); + } + } + hmin -= params->walkableClimb; + hmax += params->walkableClimb; + float bmin[3], bmax[3]; + dtVcopy(bmin, params->bmin); + dtVcopy(bmax, params->bmax); + bmin[1] = hmin; + bmax[1] = hmax; + + for (int i = 0; i < params->offMeshConCount; ++i) + { + const float* p0 = ¶ms->offMeshConVerts[(i*2+0)*3]; + const float* p1 = ¶ms->offMeshConVerts[(i*2+1)*3]; + offMeshConClass[i*2+0] = classifyOffMeshPoint(p0, bmin, bmax); + offMeshConClass[i*2+1] = classifyOffMeshPoint(p1, bmin, bmax); + + // Zero out off-mesh start positions which are not even potentially touching the mesh. + if (offMeshConClass[i*2+0] == 0xff) + { + if (p0[1] < bmin[1] || p0[1] > bmax[1]) + offMeshConClass[i*2+0] = 0; + } + + // Cound how many links should be allocated for off-mesh connections. + if (offMeshConClass[i*2+0] == 0xff) + offMeshConLinkCount++; + if (offMeshConClass[i*2+1] == 0xff) + offMeshConLinkCount++; + + if (offMeshConClass[i*2+0] == 0xff) + storedOffMeshConCount++; + } + } + + // Off-mesh connectionss are stored as polygons, adjust values. + const int totPolyCount = params->polyCount + storedOffMeshConCount; + const int totVertCount = params->vertCount + storedOffMeshConCount*2; + + // Find portal edges which are at tile borders. + int edgeCount = 0; + int portalCount = 0; + for (int i = 0; i < params->polyCount; ++i) + { + const unsigned short* p = ¶ms->polys[i*2*nvp]; + for (int j = 0; j < nvp; ++j) + { + if (p[j] == MESH_NULL_IDX) break; + edgeCount++; + + if (p[nvp+j] & 0x8000) + { + unsigned short dir = p[nvp+j] & 0xf; + if (dir != 0xf) + portalCount++; + } + } + } + + const int maxLinkCount = edgeCount + portalCount*2 + offMeshConLinkCount*2; + + // Find unique detail vertices. + int uniqueDetailVertCount = 0; + int detailTriCount = 0; + if (params->detailMeshes) + { + // Has detail mesh, count unique detail vertex count and use input detail tri count. + detailTriCount = params->detailTriCount; + for (int i = 0; i < params->polyCount; ++i) + { + const unsigned short* p = ¶ms->polys[i*nvp*2]; + int ndv = params->detailMeshes[i*4+1]; + int nv = 0; + for (int j = 0; j < nvp; ++j) + { + if (p[j] == MESH_NULL_IDX) break; + nv++; + } + ndv -= nv; + uniqueDetailVertCount += ndv; + } + } + else + { + // No input detail mesh, build detail mesh from nav polys. + uniqueDetailVertCount = 0; // No extra detail verts. + detailTriCount = 0; + for (int i = 0; i < params->polyCount; ++i) + { + const unsigned short* p = ¶ms->polys[i*nvp*2]; + int nv = 0; + for (int j = 0; j < nvp; ++j) + { + if (p[j] == MESH_NULL_IDX) break; + nv++; + } + detailTriCount += nv-2; + } + } + + // Calculate data size + const int headerSize = dtAlign4(sizeof(dtMeshHeader)); + const int vertsSize = dtAlign4(sizeof(float)*3*totVertCount); + const int polysSize = dtAlign4(sizeof(dtPoly)*totPolyCount); + const int linksSize = dtAlign4(sizeof(dtLink)*maxLinkCount); + const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*params->polyCount); + const int detailVertsSize = dtAlign4(sizeof(float)*3*uniqueDetailVertCount); + const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*detailTriCount); + const int bvTreeSize = params->buildBvTree ? dtAlign4(sizeof(dtBVNode)*params->polyCount*2) : 0; + const int offMeshConsSize = dtAlign4(sizeof(dtOffMeshConnection)*storedOffMeshConCount); + + const int dataSize = headerSize + vertsSize + polysSize + linksSize + + detailMeshesSize + detailVertsSize + detailTrisSize + + bvTreeSize + offMeshConsSize; + + unsigned char* data = (unsigned char*)dtAlloc(sizeof(unsigned char)*dataSize, DT_ALLOC_PERM); + if (!data) + { + dtFree(offMeshConClass); + return false; + } + memset(data, 0, dataSize); + + unsigned char* d = data; + + dtMeshHeader* header = dtGetThenAdvanceBufferPointer<dtMeshHeader>(d, headerSize); + float* navVerts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize); + dtPoly* navPolys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize); + d += linksSize; // Ignore links; just leave enough space for them. They'll be created on load. + dtPolyDetail* navDMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize); + float* navDVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize); + unsigned char* navDTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize); + dtBVNode* navBvtree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvTreeSize); + dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshConsSize); + + + // Store header + header->magic = DT_NAVMESH_MAGIC; + header->version = DT_NAVMESH_VERSION; + header->x = params->tileX; + header->y = params->tileY; + header->layer = params->tileLayer; + header->userId = params->userId; + header->polyCount = totPolyCount; + header->vertCount = totVertCount; + header->maxLinkCount = maxLinkCount; + dtVcopy(header->bmin, params->bmin); + dtVcopy(header->bmax, params->bmax); + header->detailMeshCount = params->polyCount; + header->detailVertCount = uniqueDetailVertCount; + header->detailTriCount = detailTriCount; + header->bvQuantFactor = 1.0f / params->cs; + header->offMeshBase = params->polyCount; + header->walkableHeight = params->walkableHeight; + header->walkableRadius = params->walkableRadius; + header->walkableClimb = params->walkableClimb; + header->offMeshConCount = storedOffMeshConCount; + header->bvNodeCount = params->buildBvTree ? params->polyCount*2 : 0; + + const int offMeshVertsBase = params->vertCount; + const int offMeshPolyBase = params->polyCount; + + // Store vertices + // Mesh vertices + for (int i = 0; i < params->vertCount; ++i) + { + const unsigned short* iv = ¶ms->verts[i*3]; + float* v = &navVerts[i*3]; + v[0] = params->bmin[0] + iv[0] * params->cs; + v[1] = params->bmin[1] + iv[1] * params->ch; + v[2] = params->bmin[2] + iv[2] * params->cs; + } + // Off-mesh link vertices. + int n = 0; + for (int i = 0; i < params->offMeshConCount; ++i) + { + // Only store connections which start from this tile. + if (offMeshConClass[i*2+0] == 0xff) + { + const float* linkv = ¶ms->offMeshConVerts[i*2*3]; + float* v = &navVerts[(offMeshVertsBase + n*2)*3]; + dtVcopy(&v[0], &linkv[0]); + dtVcopy(&v[3], &linkv[3]); + n++; + } + } + + // Store polygons + // Mesh polys + const unsigned short* src = params->polys; + for (int i = 0; i < params->polyCount; ++i) + { + dtPoly* p = &navPolys[i]; + p->vertCount = 0; + p->flags = params->polyFlags[i]; + p->setArea(params->polyAreas[i]); + p->setType(DT_POLYTYPE_GROUND); + for (int j = 0; j < nvp; ++j) + { + if (src[j] == MESH_NULL_IDX) break; + p->verts[j] = src[j]; + if (src[nvp+j] & 0x8000) + { + // Border or portal edge. + unsigned short dir = src[nvp+j] & 0xf; + if (dir == 0xf) // Border + p->neis[j] = 0; + else if (dir == 0) // Portal x- + p->neis[j] = DT_EXT_LINK | 4; + else if (dir == 1) // Portal z+ + p->neis[j] = DT_EXT_LINK | 2; + else if (dir == 2) // Portal x+ + p->neis[j] = DT_EXT_LINK | 0; + else if (dir == 3) // Portal z- + p->neis[j] = DT_EXT_LINK | 6; + } + else + { + // Normal connection + p->neis[j] = src[nvp+j]+1; + } + + p->vertCount++; + } + src += nvp*2; + } + // Off-mesh connection vertices. + n = 0; + for (int i = 0; i < params->offMeshConCount; ++i) + { + // Only store connections which start from this tile. + if (offMeshConClass[i*2+0] == 0xff) + { + dtPoly* p = &navPolys[offMeshPolyBase+n]; + p->vertCount = 2; + p->verts[0] = (unsigned short)(offMeshVertsBase + n*2+0); + p->verts[1] = (unsigned short)(offMeshVertsBase + n*2+1); + p->flags = params->offMeshConFlags[i]; + p->setArea(params->offMeshConAreas[i]); + p->setType(DT_POLYTYPE_OFFMESH_CONNECTION); + n++; + } + } + + // Store detail meshes and vertices. + // The nav polygon vertices are stored as the first vertices on each mesh. + // We compress the mesh data by skipping them and using the navmesh coordinates. + if (params->detailMeshes) + { + unsigned short vbase = 0; + for (int i = 0; i < params->polyCount; ++i) + { + dtPolyDetail& dtl = navDMeshes[i]; + const int vb = (int)params->detailMeshes[i*4+0]; + const int ndv = (int)params->detailMeshes[i*4+1]; + const int nv = navPolys[i].vertCount; + dtl.vertBase = (unsigned int)vbase; + dtl.vertCount = (unsigned char)(ndv-nv); + dtl.triBase = (unsigned int)params->detailMeshes[i*4+2]; + dtl.triCount = (unsigned char)params->detailMeshes[i*4+3]; + // Copy vertices except the first 'nv' verts which are equal to nav poly verts. + if (ndv-nv) + { + memcpy(&navDVerts[vbase*3], ¶ms->detailVerts[(vb+nv)*3], sizeof(float)*3*(ndv-nv)); + vbase += (unsigned short)(ndv-nv); + } + } + // Store triangles. + memcpy(navDTris, params->detailTris, sizeof(unsigned char)*4*params->detailTriCount); + } + else + { + // Create dummy detail mesh by triangulating polys. + int tbase = 0; + for (int i = 0; i < params->polyCount; ++i) + { + dtPolyDetail& dtl = navDMeshes[i]; + const int nv = navPolys[i].vertCount; + dtl.vertBase = 0; + dtl.vertCount = 0; + dtl.triBase = (unsigned int)tbase; + dtl.triCount = (unsigned char)(nv-2); + // Triangulate polygon (local indices). + for (int j = 2; j < nv; ++j) + { + unsigned char* t = &navDTris[tbase*4]; + t[0] = 0; + t[1] = (unsigned char)(j-1); + t[2] = (unsigned char)j; + // Bit for each edge that belongs to poly boundary. + t[3] = (1<<2); + if (j == 2) t[3] |= (1<<0); + if (j == nv-1) t[3] |= (1<<4); + tbase++; + } + } + } + + // Store and create BVtree. + // TODO: take detail mesh into account! use byte per bbox extent? + if (params->buildBvTree) + { + createBVTree(params->verts, params->vertCount, params->polys, params->polyCount, + nvp, params->cs, params->ch, params->polyCount*2, navBvtree); + } + + // Store Off-Mesh connections. + n = 0; + for (int i = 0; i < params->offMeshConCount; ++i) + { + // Only store connections which start from this tile. + if (offMeshConClass[i*2+0] == 0xff) + { + dtOffMeshConnection* con = &offMeshCons[n]; + con->poly = (unsigned short)(offMeshPolyBase + n); + // Copy connection end-points. + const float* endPts = ¶ms->offMeshConVerts[i*2*3]; + dtVcopy(&con->pos[0], &endPts[0]); + dtVcopy(&con->pos[3], &endPts[3]); + con->rad = params->offMeshConRad[i]; + con->flags = params->offMeshConDir[i] ? DT_OFFMESH_CON_BIDIR : 0; + con->side = offMeshConClass[i*2+1]; + if (params->offMeshConUserID) + con->userId = params->offMeshConUserID[i]; + n++; + } + } + + dtFree(offMeshConClass); + + *outData = data; + *outDataSize = dataSize; + + return true; +} + +bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int /*dataSize*/) +{ + dtMeshHeader* header = (dtMeshHeader*)data; + + int swappedMagic = DT_NAVMESH_MAGIC; + int swappedVersion = DT_NAVMESH_VERSION; + dtSwapEndian(&swappedMagic); + dtSwapEndian(&swappedVersion); + + if ((header->magic != DT_NAVMESH_MAGIC || header->version != DT_NAVMESH_VERSION) && + (header->magic != swappedMagic || header->version != swappedVersion)) + { + return false; + } + + dtSwapEndian(&header->magic); + dtSwapEndian(&header->version); + dtSwapEndian(&header->x); + dtSwapEndian(&header->y); + dtSwapEndian(&header->layer); + dtSwapEndian(&header->userId); + dtSwapEndian(&header->polyCount); + dtSwapEndian(&header->vertCount); + dtSwapEndian(&header->maxLinkCount); + dtSwapEndian(&header->detailMeshCount); + dtSwapEndian(&header->detailVertCount); + dtSwapEndian(&header->detailTriCount); + dtSwapEndian(&header->bvNodeCount); + dtSwapEndian(&header->offMeshConCount); + dtSwapEndian(&header->offMeshBase); + dtSwapEndian(&header->walkableHeight); + dtSwapEndian(&header->walkableRadius); + dtSwapEndian(&header->walkableClimb); + dtSwapEndian(&header->bmin[0]); + dtSwapEndian(&header->bmin[1]); + dtSwapEndian(&header->bmin[2]); + dtSwapEndian(&header->bmax[0]); + dtSwapEndian(&header->bmax[1]); + dtSwapEndian(&header->bmax[2]); + dtSwapEndian(&header->bvQuantFactor); + + // Freelist index and pointers are updated when tile is added, no need to swap. + + return true; +} + +/// @par +/// +/// @warning This function assumes that the header is in the correct endianess already. +/// Call #dtNavMeshHeaderSwapEndian() first on the data if the data is expected to be in wrong endianess +/// to start with. Call #dtNavMeshHeaderSwapEndian() after the data has been swapped if converting from +/// native to foreign endianess. +bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/) +{ + // Make sure the data is in right format. + dtMeshHeader* header = (dtMeshHeader*)data; + if (header->magic != DT_NAVMESH_MAGIC) + return false; + if (header->version != DT_NAVMESH_VERSION) + return false; + + // Patch header pointers. + const int headerSize = dtAlign4(sizeof(dtMeshHeader)); + const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount); + const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount); + const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount)); + const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount); + const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount); + const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount); + const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount); + const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount); + + unsigned char* d = data + headerSize; + float* verts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize); + dtPoly* polys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize); + d += linksSize; // Ignore links; they technically should be endian-swapped but all their data is overwritten on load anyway. + //dtLink* links = dtGetThenAdvanceBufferPointer<dtLink>(d, linksSize); + dtPolyDetail* detailMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize); + float* detailVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize); + d += detailTrisSize; // Ignore detail tris; single bytes can't be endian-swapped. + //unsigned char* detailTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize); + dtBVNode* bvTree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvtreeSize); + dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshLinksSize); + + // Vertices + for (int i = 0; i < header->vertCount*3; ++i) + { + dtSwapEndian(&verts[i]); + } + + // Polys + for (int i = 0; i < header->polyCount; ++i) + { + dtPoly* p = &polys[i]; + // poly->firstLink is update when tile is added, no need to swap. + for (int j = 0; j < DT_VERTS_PER_POLYGON; ++j) + { + dtSwapEndian(&p->verts[j]); + dtSwapEndian(&p->neis[j]); + } + dtSwapEndian(&p->flags); + } + + // Links are rebuild when tile is added, no need to swap. + + // Detail meshes + for (int i = 0; i < header->detailMeshCount; ++i) + { + dtPolyDetail* pd = &detailMeshes[i]; + dtSwapEndian(&pd->vertBase); + dtSwapEndian(&pd->triBase); + } + + // Detail verts + for (int i = 0; i < header->detailVertCount*3; ++i) + { + dtSwapEndian(&detailVerts[i]); + } + + // BV-tree + for (int i = 0; i < header->bvNodeCount; ++i) + { + dtBVNode* node = &bvTree[i]; + for (int j = 0; j < 3; ++j) + { + dtSwapEndian(&node->bmin[j]); + dtSwapEndian(&node->bmax[j]); + } + dtSwapEndian(&node->i); + } + + // Off-mesh Connections. + for (int i = 0; i < header->offMeshConCount; ++i) + { + dtOffMeshConnection* con = &offMeshCons[i]; + for (int j = 0; j < 6; ++j) + dtSwapEndian(&con->pos[j]); + dtSwapEndian(&con->rad); + dtSwapEndian(&con->poly); + } + + return true; +} diff --git a/deps/recastnavigation/Detour/Source/DetourNavMeshQuery.cpp b/deps/recastnavigation/Detour/Source/DetourNavMeshQuery.cpp new file mode 100644 index 0000000000..a263106dc1 --- /dev/null +++ b/deps/recastnavigation/Detour/Source/DetourNavMeshQuery.cpp @@ -0,0 +1,3664 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include <float.h> +#include <string.h> +#include "DetourNavMeshQuery.h" +#include "DetourNavMesh.h" +#include "DetourNode.h" +#include "DetourCommon.h" +#include "DetourMath.h" +#include "DetourAlloc.h" +#include "DetourAssert.h" +#include <new> + +/// @class dtQueryFilter +/// +/// <b>The Default Implementation</b> +/// +/// At construction: All area costs default to 1.0. All flags are included +/// and none are excluded. +/// +/// If a polygon has both an include and an exclude flag, it will be excluded. +/// +/// The way filtering works, a navigation mesh polygon must have at least one flag +/// set to ever be considered by a query. So a polygon with no flags will never +/// be considered. +/// +/// Setting the include flags to 0 will result in all polygons being excluded. +/// +/// <b>Custom Implementations</b> +/// +/// DT_VIRTUAL_QUERYFILTER must be defined in order to extend this class. +/// +/// Implement a custom query filter by overriding the virtual passFilter() +/// and getCost() functions. If this is done, both functions should be as +/// fast as possible. Use cached local copies of data rather than accessing +/// your own objects where possible. +/// +/// Custom implementations do not need to adhere to the flags or cost logic +/// used by the default implementation. +/// +/// In order for A* searches to work properly, the cost should be proportional to +/// the travel distance. Implementing a cost modifier less than 1.0 is likely +/// to lead to problems during pathfinding. +/// +/// @see dtNavMeshQuery + +dtQueryFilter::dtQueryFilter() : + m_includeFlags(0xffff), + m_excludeFlags(0) +{ + for (int i = 0; i < DT_MAX_AREAS; ++i) + m_areaCost[i] = 1.0f; +} + +#ifdef DT_VIRTUAL_QUERYFILTER +bool dtQueryFilter::passFilter(const dtPolyRef /*ref*/, + const dtMeshTile* /*tile*/, + const dtPoly* poly) const +{ + return (poly->flags & m_includeFlags) != 0 && (poly->flags & m_excludeFlags) == 0; +} + +float dtQueryFilter::getCost(const float* pa, const float* pb, + const dtPolyRef /*prevRef*/, const dtMeshTile* /*prevTile*/, const dtPoly* /*prevPoly*/, + const dtPolyRef /*curRef*/, const dtMeshTile* /*curTile*/, const dtPoly* curPoly, + const dtPolyRef /*nextRef*/, const dtMeshTile* /*nextTile*/, const dtPoly* /*nextPoly*/) const +{ + return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()]; +} +#else +inline bool dtQueryFilter::passFilter(const dtPolyRef /*ref*/, + const dtMeshTile* /*tile*/, + const dtPoly* poly) const +{ + return (poly->flags & m_includeFlags) != 0 && (poly->flags & m_excludeFlags) == 0; +} + +inline float dtQueryFilter::getCost(const float* pa, const float* pb, + const dtPolyRef /*prevRef*/, const dtMeshTile* /*prevTile*/, const dtPoly* /*prevPoly*/, + const dtPolyRef /*curRef*/, const dtMeshTile* /*curTile*/, const dtPoly* curPoly, + const dtPolyRef /*nextRef*/, const dtMeshTile* /*nextTile*/, const dtPoly* /*nextPoly*/) const +{ + return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()]; +} +#endif + +static const float H_SCALE = 2.0f; // Search heuristic scale. + + +dtNavMeshQuery* dtAllocNavMeshQuery() +{ + void* mem = dtAlloc(sizeof(dtNavMeshQuery), DT_ALLOC_PERM); + if (!mem) return 0; + return new(mem) dtNavMeshQuery; +} + +void dtFreeNavMeshQuery(dtNavMeshQuery* navmesh) +{ + if (!navmesh) return; + navmesh->~dtNavMeshQuery(); + dtFree(navmesh); +} + +////////////////////////////////////////////////////////////////////////////////////////// + +/// @class dtNavMeshQuery +/// +/// For methods that support undersized buffers, if the buffer is too small +/// to hold the entire result set the return status of the method will include +/// the #DT_BUFFER_TOO_SMALL flag. +/// +/// Constant member functions can be used by multiple clients without side +/// effects. (E.g. No change to the closed list. No impact on an in-progress +/// sliced path query. Etc.) +/// +/// Walls and portals: A @e wall is a polygon segment that is +/// considered impassable. A @e portal is a passable segment between polygons. +/// A portal may be treated as a wall based on the dtQueryFilter used for a query. +/// +/// @see dtNavMesh, dtQueryFilter, #dtAllocNavMeshQuery(), #dtAllocNavMeshQuery() + +dtNavMeshQuery::dtNavMeshQuery() : + m_nav(0), + m_tinyNodePool(0), + m_nodePool(0), + m_openList(0) +{ + memset(&m_query, 0, sizeof(dtQueryData)); +} + +dtNavMeshQuery::~dtNavMeshQuery() +{ + if (m_tinyNodePool) + m_tinyNodePool->~dtNodePool(); + if (m_nodePool) + m_nodePool->~dtNodePool(); + if (m_openList) + m_openList->~dtNodeQueue(); + dtFree(m_tinyNodePool); + dtFree(m_nodePool); + dtFree(m_openList); +} + +/// @par +/// +/// Must be the first function called after construction, before other +/// functions are used. +/// +/// This function can be used multiple times. +dtStatus dtNavMeshQuery::init(const dtNavMesh* nav, const int maxNodes) +{ + if (maxNodes > DT_NULL_IDX || maxNodes > (1 << DT_NODE_PARENT_BITS) - 1) + return DT_FAILURE | DT_INVALID_PARAM; + + m_nav = nav; + + if (!m_nodePool || m_nodePool->getMaxNodes() < maxNodes) + { + if (m_nodePool) + { + m_nodePool->~dtNodePool(); + dtFree(m_nodePool); + m_nodePool = 0; + } + m_nodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(maxNodes, dtNextPow2(maxNodes/4)); + if (!m_nodePool) + return DT_FAILURE | DT_OUT_OF_MEMORY; + } + else + { + m_nodePool->clear(); + } + + if (!m_tinyNodePool) + { + m_tinyNodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(64, 32); + if (!m_tinyNodePool) + return DT_FAILURE | DT_OUT_OF_MEMORY; + } + else + { + m_tinyNodePool->clear(); + } + + if (!m_openList || m_openList->getCapacity() < maxNodes) + { + if (m_openList) + { + m_openList->~dtNodeQueue(); + dtFree(m_openList); + m_openList = 0; + } + m_openList = new (dtAlloc(sizeof(dtNodeQueue), DT_ALLOC_PERM)) dtNodeQueue(maxNodes); + if (!m_openList) + return DT_FAILURE | DT_OUT_OF_MEMORY; + } + else + { + m_openList->clear(); + } + + return DT_SUCCESS; +} + +dtStatus dtNavMeshQuery::findRandomPoint(const dtQueryFilter* filter, float (*frand)(), + dtPolyRef* randomRef, float* randomPt) const +{ + dtAssert(m_nav); + + // Randomly pick one tile. Assume that all tiles cover roughly the same area. + const dtMeshTile* tile = 0; + float tsum = 0.0f; + for (int i = 0; i < m_nav->getMaxTiles(); i++) + { + const dtMeshTile* t = m_nav->getTile(i); + if (!t || !t->header) continue; + + // Choose random tile using reservoi sampling. + const float area = 1.0f; // Could be tile area too. + tsum += area; + const float u = frand(); + if (u*tsum <= area) + tile = t; + } + if (!tile) + return DT_FAILURE; + + // Randomly pick one polygon weighted by polygon area. + const dtPoly* poly = 0; + dtPolyRef polyRef = 0; + const dtPolyRef base = m_nav->getPolyRefBase(tile); + + float areaSum = 0.0f; + for (int i = 0; i < tile->header->polyCount; ++i) + { + const dtPoly* p = &tile->polys[i]; + // Do not return off-mesh connection polygons. + if (p->getType() != DT_POLYTYPE_GROUND) + continue; + // Must pass filter + const dtPolyRef ref = base | (dtPolyRef)i; + if (!filter->passFilter(ref, tile, p)) + continue; + + // Calc area of the polygon. + float polyArea = 0.0f; + for (int j = 2; j < p->vertCount; ++j) + { + const float* va = &tile->verts[p->verts[0]*3]; + const float* vb = &tile->verts[p->verts[j-1]*3]; + const float* vc = &tile->verts[p->verts[j]*3]; + polyArea += dtTriArea2D(va,vb,vc); + } + + // Choose random polygon weighted by area, using reservoi sampling. + areaSum += polyArea; + const float u = frand(); + if (u*areaSum <= polyArea) + { + poly = p; + polyRef = ref; + } + } + + if (!poly) + return DT_FAILURE; + + // Randomly pick point on polygon. + const float* v = &tile->verts[poly->verts[0]*3]; + float verts[3*DT_VERTS_PER_POLYGON]; + float areas[DT_VERTS_PER_POLYGON]; + dtVcopy(&verts[0*3],v); + for (int j = 1; j < poly->vertCount; ++j) + { + v = &tile->verts[poly->verts[j]*3]; + dtVcopy(&verts[j*3],v); + } + + const float s = frand(); + const float t = frand(); + + float pt[3]; + dtRandomPointInConvexPoly(verts, poly->vertCount, areas, s, t, pt); + + float h = 0.0f; + dtStatus status = getPolyHeight(polyRef, pt, &h); + if (dtStatusFailed(status)) + return status; + pt[1] = h; + + dtVcopy(randomPt, pt); + *randomRef = polyRef; + + return DT_SUCCESS; +} + +dtStatus dtNavMeshQuery::findRandomPointAroundCircle(dtPolyRef startRef, const float* centerPos, const float maxRadius, + const dtQueryFilter* filter, float (*frand)(), + dtPolyRef* randomRef, float* randomPt) const +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + // Validate input + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; + + const dtMeshTile* startTile = 0; + const dtPoly* startPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(startRef, &startTile, &startPoly); + if (!filter->passFilter(startRef, startTile, startPoly)) + return DT_FAILURE | DT_INVALID_PARAM; + + m_nodePool->clear(); + m_openList->clear(); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, centerPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + dtStatus status = DT_SUCCESS; + + const float radiusSqr = dtSqr(maxRadius); + float areaSum = 0.0f; + + const dtMeshTile* randomTile = 0; + const dtPoly* randomPoly = 0; + dtPolyRef randomPolyRef = 0; + + while (!m_openList->empty()) + { + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly); + + // Place random locations on on ground. + if (bestPoly->getType() == DT_POLYTYPE_GROUND) + { + // Calc area of the polygon. + float polyArea = 0.0f; + for (int j = 2; j < bestPoly->vertCount; ++j) + { + const float* va = &bestTile->verts[bestPoly->verts[0]*3]; + const float* vb = &bestTile->verts[bestPoly->verts[j-1]*3]; + const float* vc = &bestTile->verts[bestPoly->verts[j]*3]; + polyArea += dtTriArea2D(va,vb,vc); + } + // Choose random polygon weighted by area, using reservoi sampling. + areaSum += polyArea; + const float u = frand(); + if (u*areaSum <= polyArea) + { + randomTile = bestTile; + randomPoly = bestPoly; + randomPolyRef = bestRef; + } + } + + + // Get parent poly and tile. + dtPolyRef parentRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + if (bestNode->pidx) + parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; + if (parentRef) + m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly); + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + const dtLink* link = &bestTile->links[i]; + dtPolyRef neighbourRef = link->ref; + // Skip invalid neighbours and do not follow back to parent. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Expand to neighbour + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + // Do not advance if the polygon is excluded by the filter. + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // Find edge and calc distance to the edge. + float va[3], vb[3]; + if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) + continue; + + // If the circle is not touching the next polygon, skip it. + float tseg; + float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); + if (distSqr > radiusSqr) + continue; + + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); + if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; + continue; + } + + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Cost + if (neighbourNode->flags == 0) + dtVlerp(neighbourNode->pos, va, vb, 0.5f); + + const float total = bestNode->total + dtVdist(bestNode->pos, neighbourNode->pos); + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + + neighbourNode->id = neighbourRef; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); + neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); + neighbourNode->total = total; + + if (neighbourNode->flags & DT_NODE_OPEN) + { + m_openList->modify(neighbourNode); + } + else + { + neighbourNode->flags = DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + } + } + + if (!randomPoly) + return DT_FAILURE; + + // Randomly pick point on polygon. + const float* v = &randomTile->verts[randomPoly->verts[0]*3]; + float verts[3*DT_VERTS_PER_POLYGON]; + float areas[DT_VERTS_PER_POLYGON]; + dtVcopy(&verts[0*3],v); + for (int j = 1; j < randomPoly->vertCount; ++j) + { + v = &randomTile->verts[randomPoly->verts[j]*3]; + dtVcopy(&verts[j*3],v); + } + + const float s = frand(); + const float t = frand(); + + float pt[3]; + dtRandomPointInConvexPoly(verts, randomPoly->vertCount, areas, s, t, pt); + + float h = 0.0f; + dtStatus stat = getPolyHeight(randomPolyRef, pt, &h); + if (dtStatusFailed(status)) + return stat; + pt[1] = h; + + dtVcopy(randomPt, pt); + *randomRef = randomPolyRef; + + return DT_SUCCESS; +} + + +////////////////////////////////////////////////////////////////////////////////////////// + +/// @par +/// +/// Uses the detail polygons to find the surface height. (Most accurate.) +/// +/// @p pos does not have to be within the bounds of the polygon or navigation mesh. +/// +/// See closestPointOnPolyBoundary() for a limited but faster option. +/// +dtStatus dtNavMeshQuery::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const +{ + dtAssert(m_nav); + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) + return DT_FAILURE | DT_INVALID_PARAM; + if (!tile) + return DT_FAILURE | DT_INVALID_PARAM; + + // Off-mesh connections don't have detail polygons. + if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + { + const float* v0 = &tile->verts[poly->verts[0]*3]; + const float* v1 = &tile->verts[poly->verts[1]*3]; + const float d0 = dtVdist(pos, v0); + const float d1 = dtVdist(pos, v1); + const float u = d0 / (d0+d1); + dtVlerp(closest, v0, v1, u); + if (posOverPoly) + *posOverPoly = false; + return DT_SUCCESS; + } + + const unsigned int ip = (unsigned int)(poly - tile->polys); + const dtPolyDetail* pd = &tile->detailMeshes[ip]; + + // Clamp point to be inside the polygon. + float verts[DT_VERTS_PER_POLYGON*3]; + float edged[DT_VERTS_PER_POLYGON]; + float edget[DT_VERTS_PER_POLYGON]; + const int nv = poly->vertCount; + for (int i = 0; i < nv; ++i) + dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]); + + dtVcopy(closest, pos); + if (!dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget)) + { + // Point is outside the polygon, dtClamp to nearest edge. + float dmin = edged[0]; + int imin = 0; + for (int i = 1; i < nv; ++i) + { + if (edged[i] < dmin) + { + dmin = edged[i]; + imin = i; + } + } + const float* va = &verts[imin*3]; + const float* vb = &verts[((imin+1)%nv)*3]; + dtVlerp(closest, va, vb, edget[imin]); + + if (posOverPoly) + *posOverPoly = false; + } + else + { + if (posOverPoly) + *posOverPoly = true; + } + + // Find height at the location. + for (int j = 0; j < pd->triCount; ++j) + { + const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4]; + const float* v[3]; + for (int k = 0; k < 3; ++k) + { + if (t[k] < poly->vertCount) + v[k] = &tile->verts[poly->verts[t[k]]*3]; + else + v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3]; + } + float h; + if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h)) + { + closest[1] = h; + break; + } + } + + return DT_SUCCESS; +} + +/// @par +/// +/// Much faster than closestPointOnPoly(). +/// +/// If the provided position lies within the polygon's xz-bounds (above or below), +/// then @p pos and @p closest will be equal. +/// +/// The height of @p closest will be the polygon boundary. The height detail is not used. +/// +/// @p pos does not have to be within the bounds of the polybon or the navigation mesh. +/// +dtStatus dtNavMeshQuery::closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const +{ + dtAssert(m_nav); + + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) + return DT_FAILURE | DT_INVALID_PARAM; + + // Collect vertices. + float verts[DT_VERTS_PER_POLYGON*3]; + float edged[DT_VERTS_PER_POLYGON]; + float edget[DT_VERTS_PER_POLYGON]; + int nv = 0; + for (int i = 0; i < (int)poly->vertCount; ++i) + { + dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]); + nv++; + } + + bool inside = dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget); + if (inside) + { + // Point is inside the polygon, return the point. + dtVcopy(closest, pos); + } + else + { + // Point is outside the polygon, dtClamp to nearest edge. + float dmin = edged[0]; + int imin = 0; + for (int i = 1; i < nv; ++i) + { + if (edged[i] < dmin) + { + dmin = edged[i]; + imin = i; + } + } + const float* va = &verts[imin*3]; + const float* vb = &verts[((imin+1)%nv)*3]; + dtVlerp(closest, va, vb, edget[imin]); + } + + return DT_SUCCESS; +} + +/// @par +/// +/// Will return #DT_FAILURE if the provided position is outside the xz-bounds +/// of the polygon. +/// +dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const +{ + dtAssert(m_nav); + + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) + return DT_FAILURE | DT_INVALID_PARAM; + + if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + { + const float* v0 = &tile->verts[poly->verts[0]*3]; + const float* v1 = &tile->verts[poly->verts[1]*3]; + const float d0 = dtVdist2D(pos, v0); + const float d1 = dtVdist2D(pos, v1); + const float u = d0 / (d0+d1); + if (height) + *height = v0[1] + (v1[1] - v0[1]) * u; + return DT_SUCCESS; + } + else + { + const unsigned int ip = (unsigned int)(poly - tile->polys); + const dtPolyDetail* pd = &tile->detailMeshes[ip]; + for (int j = 0; j < pd->triCount; ++j) + { + const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4]; + const float* v[3]; + for (int k = 0; k < 3; ++k) + { + if (t[k] < poly->vertCount) + v[k] = &tile->verts[poly->verts[t[k]]*3]; + else + v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3]; + } + float h; + if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h)) + { + if (height) + *height = h; + return DT_SUCCESS; + } + } + } + + return DT_FAILURE | DT_INVALID_PARAM; +} + +class dtFindNearestPolyQuery : public dtPolyQuery +{ + const dtNavMeshQuery* m_query; + const float* m_center; + float m_nearestDistanceSqr; + dtPolyRef m_nearestRef; + float m_nearestPoint[3]; + +public: + dtFindNearestPolyQuery(const dtNavMeshQuery* query, const float* center) + : m_query(query), m_center(center), m_nearestDistanceSqr(FLT_MAX), m_nearestRef(0), m_nearestPoint() + { + } + + dtPolyRef nearestRef() const { return m_nearestRef; } + const float* nearestPoint() const { return m_nearestPoint; } + + void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count) + { + dtIgnoreUnused(polys); + + for (int i = 0; i < count; ++i) + { + dtPolyRef ref = refs[i]; + float closestPtPoly[3]; + float diff[3]; + bool posOverPoly = false; + float d; + m_query->closestPointOnPoly(ref, m_center, closestPtPoly, &posOverPoly); + + // If a point is directly over a polygon and closer than + // climb height, favor that instead of straight line nearest point. + dtVsub(diff, m_center, closestPtPoly); + if (posOverPoly) + { + d = dtAbs(diff[1]) - tile->header->walkableClimb; + d = d > 0 ? d*d : 0; + } + else + { + d = dtVlenSqr(diff); + } + + if (d < m_nearestDistanceSqr) + { + dtVcopy(m_nearestPoint, closestPtPoly); + + m_nearestDistanceSqr = d; + m_nearestRef = ref; + } + } + } +}; + +/// @par +/// +/// @note If the search box does not intersect any polygons the search will +/// return #DT_SUCCESS, but @p nearestRef will be zero. So if in doubt, check +/// @p nearestRef before using @p nearestPt. +/// +dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* extents, + const dtQueryFilter* filter, + dtPolyRef* nearestRef, float* nearestPt) const +{ + dtAssert(m_nav); + + if (!nearestRef) + return DT_FAILURE | DT_INVALID_PARAM; + + dtFindNearestPolyQuery query(this, center); + + dtStatus status = queryPolygons(center, extents, filter, &query); + if (dtStatusFailed(status)) + return status; + + *nearestRef = query.nearestRef(); + // Only override nearestPt if we actually found a poly so the nearest point + // is valid. + if (nearestPt && *nearestRef) + dtVcopy(nearestPt, query.nearestPoint()); + + return DT_SUCCESS; +} + +void dtNavMeshQuery::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax, + const dtQueryFilter* filter, dtPolyQuery* query) const +{ + dtAssert(m_nav); + static const int batchSize = 32; + dtPolyRef polyRefs[batchSize]; + dtPoly* polys[batchSize]; + int n = 0; + + if (tile->bvTree) + { + const dtBVNode* node = &tile->bvTree[0]; + const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount]; + const float* tbmin = tile->header->bmin; + const float* tbmax = tile->header->bmax; + const float qfac = tile->header->bvQuantFactor; + + // Calculate quantized box + unsigned short bmin[3], bmax[3]; + // dtClamp query box to world box. + float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0]; + float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1]; + float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2]; + float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0]; + float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1]; + float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2]; + // Quantize + bmin[0] = (unsigned short)(qfac * minx) & 0xfffe; + bmin[1] = (unsigned short)(qfac * miny) & 0xfffe; + bmin[2] = (unsigned short)(qfac * minz) & 0xfffe; + bmax[0] = (unsigned short)(qfac * maxx + 1) | 1; + bmax[1] = (unsigned short)(qfac * maxy + 1) | 1; + bmax[2] = (unsigned short)(qfac * maxz + 1) | 1; + + // Traverse tree + const dtPolyRef base = m_nav->getPolyRefBase(tile); + while (node < end) + { + const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax); + const bool isLeafNode = node->i >= 0; + + if (isLeafNode && overlap) + { + dtPolyRef ref = base | (dtPolyRef)node->i; + if (filter->passFilter(ref, tile, &tile->polys[node->i])) + { + polyRefs[n] = ref; + polys[n] = &tile->polys[node->i]; + + if (n == batchSize - 1) + { + query->process(tile, polys, polyRefs, batchSize); + n = 0; + } + else + { + n++; + } + } + } + + if (overlap || isLeafNode) + node++; + else + { + const int escapeIndex = -node->i; + node += escapeIndex; + } + } + } + else + { + float bmin[3], bmax[3]; + const dtPolyRef base = m_nav->getPolyRefBase(tile); + for (int i = 0; i < tile->header->polyCount; ++i) + { + dtPoly* p = &tile->polys[i]; + // Do not return off-mesh connection polygons. + if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + // Must pass filter + const dtPolyRef ref = base | (dtPolyRef)i; + if (!filter->passFilter(ref, tile, p)) + continue; + // Calc polygon bounds. + const float* v = &tile->verts[p->verts[0]*3]; + dtVcopy(bmin, v); + dtVcopy(bmax, v); + for (int j = 1; j < p->vertCount; ++j) + { + v = &tile->verts[p->verts[j]*3]; + dtVmin(bmin, v); + dtVmax(bmax, v); + } + if (dtOverlapBounds(qmin, qmax, bmin, bmax)) + { + polyRefs[n] = ref; + polys[n] = p; + + if (n == batchSize - 1) + { + query->process(tile, polys, polyRefs, batchSize); + n = 0; + } + else + { + n++; + } + } + } + } + + // Process the last polygons that didn't make a full batch. + if (n > 0) + query->process(tile, polys, polyRefs, n); +} + +class dtCollectPolysQuery : public dtPolyQuery +{ + dtPolyRef* m_polys; + const int m_maxPolys; + int m_numCollected; + bool m_overflow; + +public: + dtCollectPolysQuery(dtPolyRef* polys, const int maxPolys) + : m_polys(polys), m_maxPolys(maxPolys), m_numCollected(0), m_overflow(false) + { + } + + int numCollected() const { return m_numCollected; } + bool overflowed() const { return m_overflow; } + + void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count) + { + dtIgnoreUnused(tile); + dtIgnoreUnused(polys); + + int numLeft = m_maxPolys - m_numCollected; + int toCopy = count; + if (toCopy > numLeft) + { + m_overflow = true; + toCopy = numLeft; + } + + memcpy(m_polys + m_numCollected, refs, (size_t)toCopy * sizeof(dtPolyRef)); + m_numCollected += toCopy; + } +}; + +/// @par +/// +/// If no polygons are found, the function will return #DT_SUCCESS with a +/// @p polyCount of zero. +/// +/// If @p polys is too small to hold the entire result set, then the array will +/// be filled to capacity. The method of choosing which polygons from the +/// full set are included in the partial result set is undefined. +/// +dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* extents, + const dtQueryFilter* filter, + dtPolyRef* polys, int* polyCount, const int maxPolys) const +{ + if (!polys || !polyCount || maxPolys < 0) + return DT_FAILURE | DT_INVALID_PARAM; + + dtCollectPolysQuery collector(polys, maxPolys); + + dtStatus status = queryPolygons(center, extents, filter, &collector); + if (dtStatusFailed(status)) + return status; + + *polyCount = collector.numCollected(); + return collector.overflowed() ? DT_SUCCESS | DT_BUFFER_TOO_SMALL : DT_SUCCESS; +} + +/// @par +/// +/// The query will be invoked with batches of polygons. Polygons passed +/// to the query have bounding boxes that overlap with the center and extents +/// passed to this function. The dtPolyQuery::process function is invoked multiple +/// times until all overlapping polygons have been processed. +/// +dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* extents, + const dtQueryFilter* filter, dtPolyQuery* query) const +{ + dtAssert(m_nav); + + if (!center || !extents || !filter || !query) + return DT_FAILURE | DT_INVALID_PARAM; + + float bmin[3], bmax[3]; + dtVsub(bmin, center, extents); + dtVadd(bmax, center, extents); + + // Find tiles the query touches. + int minx, miny, maxx, maxy; + m_nav->calcTileLoc(bmin, &minx, &miny); + m_nav->calcTileLoc(bmax, &maxx, &maxy); + + static const int MAX_NEIS = 32; + const dtMeshTile* neis[MAX_NEIS]; + + for (int y = miny; y <= maxy; ++y) + { + for (int x = minx; x <= maxx; ++x) + { + const int nneis = m_nav->getTilesAt(x,y,neis,MAX_NEIS); + for (int j = 0; j < nneis; ++j) + { + queryPolygonsInTile(neis[j], bmin, bmax, filter, query); + } + } + } + + return DT_SUCCESS; +} + +/// @par +/// +/// If the end polygon cannot be reached through the navigation graph, +/// the last polygon in the path will be the nearest the end polygon. +/// +/// If the path array is to small to hold the full result, it will be filled as +/// far as possible from the start polygon toward the end polygon. +/// +/// The start and end positions are used to calculate traversal costs. +/// (The y-values impact the result.) +/// +dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef, + const float* startPos, const float* endPos, + const dtQueryFilter* filter, + dtPolyRef* path, int* pathCount, const int maxPath) const +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + if (pathCount) + *pathCount = 0; + + // Validate input + if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) || + !startPos || !endPos || !filter || maxPath <= 0 || !path || !pathCount) + return DT_FAILURE | DT_INVALID_PARAM; + + if (startRef == endRef) + { + path[0] = startRef; + *pathCount = 1; + return DT_SUCCESS; + } + + m_nodePool->clear(); + m_openList->clear(); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, startPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = dtVdist(startPos, endPos) * H_SCALE; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + dtNode* lastBestNode = startNode; + float lastBestNodeCost = startNode->total; + + bool outOfNodes = false; + + while (!m_openList->empty()) + { + // Remove node from open list and put it in closed list. + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Reached the goal, stop searching. + if (bestNode->id == endRef) + { + lastBestNode = bestNode; + break; + } + + // Get current poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly); + + // Get parent poly and tile. + dtPolyRef parentRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + if (bestNode->pidx) + parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; + if (parentRef) + m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly); + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + dtPolyRef neighbourRef = bestTile->links[i].ref; + + // Skip invalid ids and do not expand back to where we came from. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Get neighbour poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // deal explicitly with crossing tile boundaries + unsigned char crossSide = 0; + if (bestTile->links[i].side != 0xff) + crossSide = bestTile->links[i].side >> 1; + + // get the node + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef, crossSide); + if (!neighbourNode) + { + outOfNodes = true; + continue; + } + + // If the node is visited the first time, calculate node position. + if (neighbourNode->flags == 0) + { + getEdgeMidPoint(bestRef, bestPoly, bestTile, + neighbourRef, neighbourPoly, neighbourTile, + neighbourNode->pos); + } + + // Calculate cost and heuristic. + float cost = 0; + float heuristic = 0; + + // Special case for last node. + if (neighbourRef == endRef) + { + // Cost + const float curCost = filter->getCost(bestNode->pos, neighbourNode->pos, + parentRef, parentTile, parentPoly, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly); + const float endCost = filter->getCost(neighbourNode->pos, endPos, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly, + 0, 0, 0); + + cost = bestNode->cost + curCost + endCost; + heuristic = 0; + } + else + { + // Cost + const float curCost = filter->getCost(bestNode->pos, neighbourNode->pos, + parentRef, parentTile, parentPoly, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly); + cost = bestNode->cost + curCost; + heuristic = dtVdist(neighbourNode->pos, endPos)*H_SCALE; + } + + const float total = cost + heuristic; + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + // The node is already visited and process, and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_CLOSED) && total >= neighbourNode->total) + continue; + + // Add or update the node. + neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); + neighbourNode->id = neighbourRef; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); + neighbourNode->cost = cost; + neighbourNode->total = total; + + if (neighbourNode->flags & DT_NODE_OPEN) + { + // Already in open, update node location. + m_openList->modify(neighbourNode); + } + else + { + // Put the node in open list. + neighbourNode->flags |= DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + + // Update nearest node to target so far. + if (heuristic < lastBestNodeCost) + { + lastBestNodeCost = heuristic; + lastBestNode = neighbourNode; + } + } + } + + dtStatus status = getPathToNode(lastBestNode, path, pathCount, maxPath); + + if (lastBestNode->id != endRef) + status |= DT_PARTIAL_RESULT; + + if (outOfNodes) + status |= DT_OUT_OF_NODES; + + return status; +} + +dtStatus dtNavMeshQuery::getPathToNode(dtNode* endNode, dtPolyRef* path, int* pathCount, int maxPath) const +{ + // Find the length of the entire path. + dtNode* curNode = endNode; + int length = 0; + do + { + length++; + curNode = m_nodePool->getNodeAtIdx(curNode->pidx); + } while (curNode); + + // If the path cannot be fully stored then advance to the last node we will be able to store. + curNode = endNode; + int writeCount; + for (writeCount = length; writeCount > maxPath; writeCount--) + { + dtAssert(curNode); + + curNode = m_nodePool->getNodeAtIdx(curNode->pidx); + } + + // Write path + for (int i = writeCount - 1; i >= 0; i--) + { + dtAssert(curNode); + + path[i] = curNode->id; + curNode = m_nodePool->getNodeAtIdx(curNode->pidx); + } + + dtAssert(!curNode); + + *pathCount = dtMin(length, maxPath); + + if (length > maxPath) + return DT_SUCCESS | DT_BUFFER_TOO_SMALL; + + return DT_SUCCESS; +} + + +/// @par +/// +/// @warning Calling any non-slice methods before calling finalizeSlicedFindPath() +/// or finalizeSlicedFindPathPartial() may result in corrupted data! +/// +/// The @p filter pointer is stored and used for the duration of the sliced +/// path query. +/// +dtStatus dtNavMeshQuery::initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef, + const float* startPos, const float* endPos, + const dtQueryFilter* filter, const unsigned int options) +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + // Init path state. + memset(&m_query, 0, sizeof(dtQueryData)); + m_query.status = DT_FAILURE; + m_query.startRef = startRef; + m_query.endRef = endRef; + dtVcopy(m_query.startPos, startPos); + dtVcopy(m_query.endPos, endPos); + m_query.filter = filter; + m_query.options = options; + m_query.raycastLimitSqr = FLT_MAX; + + if (!startRef || !endRef) + return DT_FAILURE | DT_INVALID_PARAM; + + // Validate input + if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef)) + return DT_FAILURE | DT_INVALID_PARAM; + + // trade quality with performance? + if (options & DT_FINDPATH_ANY_ANGLE) + { + // limiting to several times the character radius yields nice results. It is not sensitive + // so it is enough to compute it from the first tile. + const dtMeshTile* tile = m_nav->getTileByRef(startRef); + float agentRadius = tile->header->walkableRadius; + m_query.raycastLimitSqr = dtSqr(agentRadius * DT_RAY_CAST_LIMIT_PROPORTIONS); + } + + if (startRef == endRef) + { + m_query.status = DT_SUCCESS; + return DT_SUCCESS; + } + + m_nodePool->clear(); + m_openList->clear(); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, startPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = dtVdist(startPos, endPos) * H_SCALE; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + m_query.status = DT_IN_PROGRESS; + m_query.lastBestNode = startNode; + m_query.lastBestNodeCost = startNode->total; + + return m_query.status; +} + +dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter, int* doneIters) +{ + if (!dtStatusInProgress(m_query.status)) + return m_query.status; + + // Make sure the request is still valid. + if (!m_nav->isValidPolyRef(m_query.startRef) || !m_nav->isValidPolyRef(m_query.endRef)) + { + m_query.status = DT_FAILURE; + return DT_FAILURE; + } + + dtRaycastHit rayHit; + rayHit.maxPath = 0; + + int iter = 0; + while (iter < maxIter && !m_openList->empty()) + { + iter++; + + // Remove node from open list and put it in closed list. + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Reached the goal, stop searching. + if (bestNode->id == m_query.endRef) + { + m_query.lastBestNode = bestNode; + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + m_query.status = DT_SUCCESS | details; + if (doneIters) + *doneIters = iter; + return m_query.status; + } + + // Get current poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(bestRef, &bestTile, &bestPoly))) + { + // The polygon has disappeared during the sliced query, fail. + m_query.status = DT_FAILURE; + if (doneIters) + *doneIters = iter; + return m_query.status; + } + + // Get parent and grand parent poly and tile. + dtPolyRef parentRef = 0, grandpaRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + dtNode* parentNode = 0; + if (bestNode->pidx) + { + parentNode = m_nodePool->getNodeAtIdx(bestNode->pidx); + parentRef = parentNode->id; + if (parentNode->pidx) + grandpaRef = m_nodePool->getNodeAtIdx(parentNode->pidx)->id; + } + if (parentRef) + { + bool invalidParent = dtStatusFailed(m_nav->getTileAndPolyByRef(parentRef, &parentTile, &parentPoly)); + if (invalidParent || (grandpaRef && !m_nav->isValidPolyRef(grandpaRef)) ) + { + // The polygon has disappeared during the sliced query, fail. + m_query.status = DT_FAILURE; + if (doneIters) + *doneIters = iter; + return m_query.status; + } + } + + // decide whether to test raycast to previous nodes + bool tryLOS = false; + if (m_query.options & DT_FINDPATH_ANY_ANGLE) + { + if ((parentRef != 0) && (dtVdistSqr(parentNode->pos, bestNode->pos) < m_query.raycastLimitSqr)) + tryLOS = true; + } + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + dtPolyRef neighbourRef = bestTile->links[i].ref; + + // Skip invalid ids and do not expand back to where we came from. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Get neighbour poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + if (!m_query.filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // get the neighbor node + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef, 0); + if (!neighbourNode) + { + m_query.status |= DT_OUT_OF_NODES; + continue; + } + + // do not expand to nodes that were already visited from the same parent + if (neighbourNode->pidx != 0 && neighbourNode->pidx == bestNode->pidx) + continue; + + // If the node is visited the first time, calculate node position. + if (neighbourNode->flags == 0) + { + getEdgeMidPoint(bestRef, bestPoly, bestTile, + neighbourRef, neighbourPoly, neighbourTile, + neighbourNode->pos); + } + + // Calculate cost and heuristic. + float cost = 0; + float heuristic = 0; + + // raycast parent + bool foundShortCut = false; + rayHit.pathCost = rayHit.t = 0; + if (tryLOS) + { + raycast(parentRef, parentNode->pos, neighbourNode->pos, m_query.filter, DT_RAYCAST_USE_COSTS, &rayHit, grandpaRef); + foundShortCut = rayHit.t >= 1.0f; + } + + // update move cost + if (foundShortCut) + { + // shortcut found using raycast. Using shorter cost instead + cost = parentNode->cost + rayHit.pathCost; + } + else + { + // No shortcut found. + const float curCost = m_query.filter->getCost(bestNode->pos, neighbourNode->pos, + parentRef, parentTile, parentPoly, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly); + cost = bestNode->cost + curCost; + } + + // Special case for last node. + if (neighbourRef == m_query.endRef) + { + const float endCost = m_query.filter->getCost(neighbourNode->pos, m_query.endPos, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly, + 0, 0, 0); + + cost = cost + endCost; + heuristic = 0; + } + else + { + heuristic = dtVdist(neighbourNode->pos, m_query.endPos)*H_SCALE; + } + + const float total = cost + heuristic; + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + // The node is already visited and process, and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_CLOSED) && total >= neighbourNode->total) + continue; + + // Add or update the node. + neighbourNode->pidx = foundShortCut ? bestNode->pidx : m_nodePool->getNodeIdx(bestNode); + neighbourNode->id = neighbourRef; + neighbourNode->flags = (neighbourNode->flags & ~(DT_NODE_CLOSED | DT_NODE_PARENT_DETACHED)); + neighbourNode->cost = cost; + neighbourNode->total = total; + if (foundShortCut) + neighbourNode->flags = (neighbourNode->flags | DT_NODE_PARENT_DETACHED); + + if (neighbourNode->flags & DT_NODE_OPEN) + { + // Already in open, update node location. + m_openList->modify(neighbourNode); + } + else + { + // Put the node in open list. + neighbourNode->flags |= DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + + // Update nearest node to target so far. + if (heuristic < m_query.lastBestNodeCost) + { + m_query.lastBestNodeCost = heuristic; + m_query.lastBestNode = neighbourNode; + } + } + } + + // Exhausted all nodes, but could not find path. + if (m_openList->empty()) + { + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + m_query.status = DT_SUCCESS | details; + } + + if (doneIters) + *doneIters = iter; + + return m_query.status; +} + +dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, const int maxPath) +{ + *pathCount = 0; + + if (dtStatusFailed(m_query.status)) + { + // Reset query. + memset(&m_query, 0, sizeof(dtQueryData)); + return DT_FAILURE; + } + + int n = 0; + + if (m_query.startRef == m_query.endRef) + { + // Special case: the search starts and ends at same poly. + path[n++] = m_query.startRef; + } + else + { + // Reverse the path. + dtAssert(m_query.lastBestNode); + + if (m_query.lastBestNode->id != m_query.endRef) + m_query.status |= DT_PARTIAL_RESULT; + + dtNode* prev = 0; + dtNode* node = m_query.lastBestNode; + int prevRay = 0; + do + { + dtNode* next = m_nodePool->getNodeAtIdx(node->pidx); + node->pidx = m_nodePool->getNodeIdx(prev); + prev = node; + int nextRay = node->flags & DT_NODE_PARENT_DETACHED; // keep track of whether parent is not adjacent (i.e. due to raycast shortcut) + node->flags = (node->flags & ~DT_NODE_PARENT_DETACHED) | prevRay; // and store it in the reversed path's node + prevRay = nextRay; + node = next; + } + while (node); + + // Store path + node = prev; + do + { + dtNode* next = m_nodePool->getNodeAtIdx(node->pidx); + dtStatus status = 0; + if (node->flags & DT_NODE_PARENT_DETACHED) + { + float t, normal[3]; + int m; + status = raycast(node->id, node->pos, next->pos, m_query.filter, &t, normal, path+n, &m, maxPath-n); + n += m; + // raycast ends on poly boundary and the path might include the next poly boundary. + if (path[n-1] == next->id) + n--; // remove to avoid duplicates + } + else + { + path[n++] = node->id; + if (n >= maxPath) + status = DT_BUFFER_TOO_SMALL; + } + + if (status & DT_STATUS_DETAIL_MASK) + { + m_query.status |= status & DT_STATUS_DETAIL_MASK; + break; + } + node = next; + } + while (node); + } + + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + + // Reset query. + memset(&m_query, 0, sizeof(dtQueryData)); + + *pathCount = n; + + return DT_SUCCESS | details; +} + +dtStatus dtNavMeshQuery::finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize, + dtPolyRef* path, int* pathCount, const int maxPath) +{ + *pathCount = 0; + + if (existingSize == 0) + { + return DT_FAILURE; + } + + if (dtStatusFailed(m_query.status)) + { + // Reset query. + memset(&m_query, 0, sizeof(dtQueryData)); + return DT_FAILURE; + } + + int n = 0; + + if (m_query.startRef == m_query.endRef) + { + // Special case: the search starts and ends at same poly. + path[n++] = m_query.startRef; + } + else + { + // Find furthest existing node that was visited. + dtNode* prev = 0; + dtNode* node = 0; + for (int i = existingSize-1; i >= 0; --i) + { + m_nodePool->findNodes(existing[i], &node, 1); + if (node) + break; + } + + if (!node) + { + m_query.status |= DT_PARTIAL_RESULT; + dtAssert(m_query.lastBestNode); + node = m_query.lastBestNode; + } + + // Reverse the path. + int prevRay = 0; + do + { + dtNode* next = m_nodePool->getNodeAtIdx(node->pidx); + node->pidx = m_nodePool->getNodeIdx(prev); + prev = node; + int nextRay = node->flags & DT_NODE_PARENT_DETACHED; // keep track of whether parent is not adjacent (i.e. due to raycast shortcut) + node->flags = (node->flags & ~DT_NODE_PARENT_DETACHED) | prevRay; // and store it in the reversed path's node + prevRay = nextRay; + node = next; + } + while (node); + + // Store path + node = prev; + do + { + dtNode* next = m_nodePool->getNodeAtIdx(node->pidx); + dtStatus status = 0; + if (node->flags & DT_NODE_PARENT_DETACHED) + { + float t, normal[3]; + int m; + status = raycast(node->id, node->pos, next->pos, m_query.filter, &t, normal, path+n, &m, maxPath-n); + n += m; + // raycast ends on poly boundary and the path might include the next poly boundary. + if (path[n-1] == next->id) + n--; // remove to avoid duplicates + } + else + { + path[n++] = node->id; + if (n >= maxPath) + status = DT_BUFFER_TOO_SMALL; + } + + if (status & DT_STATUS_DETAIL_MASK) + { + m_query.status |= status & DT_STATUS_DETAIL_MASK; + break; + } + node = next; + } + while (node); + } + + const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK; + + // Reset query. + memset(&m_query, 0, sizeof(dtQueryData)); + + *pathCount = n; + + return DT_SUCCESS | details; +} + + +dtStatus dtNavMeshQuery::appendVertex(const float* pos, const unsigned char flags, const dtPolyRef ref, + float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, + int* straightPathCount, const int maxStraightPath) const +{ + if ((*straightPathCount) > 0 && dtVequal(&straightPath[((*straightPathCount)-1)*3], pos)) + { + // The vertices are equal, update flags and poly. + if (straightPathFlags) + straightPathFlags[(*straightPathCount)-1] = flags; + if (straightPathRefs) + straightPathRefs[(*straightPathCount)-1] = ref; + } + else + { + // Append new vertex. + dtVcopy(&straightPath[(*straightPathCount)*3], pos); + if (straightPathFlags) + straightPathFlags[(*straightPathCount)] = flags; + if (straightPathRefs) + straightPathRefs[(*straightPathCount)] = ref; + (*straightPathCount)++; + + // If there is no space to append more vertices, return. + if ((*straightPathCount) >= maxStraightPath) + { + return DT_SUCCESS | DT_BUFFER_TOO_SMALL; + } + + // If reached end of path, return. + if (flags == DT_STRAIGHTPATH_END) + { + return DT_SUCCESS; + } + } + return DT_IN_PROGRESS; +} + +dtStatus dtNavMeshQuery::appendPortals(const int startIdx, const int endIdx, const float* endPos, const dtPolyRef* path, + float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, + int* straightPathCount, const int maxStraightPath, const int options) const +{ + const float* startPos = &straightPath[(*straightPathCount-1)*3]; + // Append or update last vertex + dtStatus stat = 0; + for (int i = startIdx; i < endIdx; i++) + { + // Calculate portal + const dtPolyRef from = path[i]; + const dtMeshTile* fromTile = 0; + const dtPoly* fromPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly))) + return DT_FAILURE | DT_INVALID_PARAM; + + const dtPolyRef to = path[i+1]; + const dtMeshTile* toTile = 0; + const dtPoly* toPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly))) + return DT_FAILURE | DT_INVALID_PARAM; + + float left[3], right[3]; + if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right))) + break; + + if (options & DT_STRAIGHTPATH_AREA_CROSSINGS) + { + // Skip intersection if only area crossings are requested. + if (fromPoly->getArea() == toPoly->getArea()) + continue; + } + + // Append intersection + float s,t; + if (dtIntersectSegSeg2D(startPos, endPos, left, right, s, t)) + { + float pt[3]; + dtVlerp(pt, left,right, t); + + stat = appendVertex(pt, 0, path[i+1], + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; + } + } + return DT_IN_PROGRESS; +} + +/// @par +/// +/// This method peforms what is often called 'string pulling'. +/// +/// The start position is clamped to the first polygon in the path, and the +/// end position is clamped to the last. So the start and end positions should +/// normally be within or very near the first and last polygons respectively. +/// +/// The returned polygon references represent the reference id of the polygon +/// that is entered at the associated path position. The reference id associated +/// with the end point will always be zero. This allows, for example, matching +/// off-mesh link points to their representative polygons. +/// +/// If the provided result buffers are too small for the entire result set, +/// they will be filled as far as possible from the start toward the end +/// position. +/// +dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* endPos, + const dtPolyRef* path, const int pathSize, + float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs, + int* straightPathCount, const int maxStraightPath, const int options) const +{ + dtAssert(m_nav); + + *straightPathCount = 0; + + if (!maxStraightPath) + return DT_FAILURE | DT_INVALID_PARAM; + + if (!path[0]) + return DT_FAILURE | DT_INVALID_PARAM; + + dtStatus stat = 0; + + // TODO: Should this be callers responsibility? + float closestStartPos[3]; + if (dtStatusFailed(closestPointOnPolyBoundary(path[0], startPos, closestStartPos))) + return DT_FAILURE | DT_INVALID_PARAM; + + float closestEndPos[3]; + if (dtStatusFailed(closestPointOnPolyBoundary(path[pathSize-1], endPos, closestEndPos))) + return DT_FAILURE | DT_INVALID_PARAM; + + // Add start point. + stat = appendVertex(closestStartPos, DT_STRAIGHTPATH_START, path[0], + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; + + if (pathSize > 1) + { + float portalApex[3], portalLeft[3], portalRight[3]; + dtVcopy(portalApex, closestStartPos); + dtVcopy(portalLeft, portalApex); + dtVcopy(portalRight, portalApex); + int apexIndex = 0; + int leftIndex = 0; + int rightIndex = 0; + + unsigned char leftPolyType = 0; + unsigned char rightPolyType = 0; + + dtPolyRef leftPolyRef = path[0]; + dtPolyRef rightPolyRef = path[0]; + + for (int i = 0; i < pathSize; ++i) + { + float left[3], right[3]; + unsigned char toType; + + if (i+1 < pathSize) + { + unsigned char fromType; // fromType is ignored. + + // Next portal. + if (dtStatusFailed(getPortalPoints(path[i], path[i+1], left, right, fromType, toType))) + { + // Failed to get portal points, in practice this means that path[i+1] is invalid polygon. + // Clamp the end point to path[i], and return the path so far. + + if (dtStatusFailed(closestPointOnPolyBoundary(path[i], endPos, closestEndPos))) + { + // This should only happen when the first polygon is invalid. + return DT_FAILURE | DT_INVALID_PARAM; + } + + // Apeend portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + // Ignore status return value as we're just about to return anyway. + appendPortals(apexIndex, i, closestEndPos, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + } + + // Ignore status return value as we're just about to return anyway. + appendVertex(closestEndPos, 0, path[i], + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + + return DT_SUCCESS | DT_PARTIAL_RESULT | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0); + } + + // If starting really close the portal, advance. + if (i == 0) + { + float t; + if (dtDistancePtSegSqr2D(portalApex, left, right, t) < dtSqr(0.001f)) + continue; + } + } + else + { + // End of the path. + dtVcopy(left, closestEndPos); + dtVcopy(right, closestEndPos); + + toType = DT_POLYTYPE_GROUND; + } + + // Right vertex. + if (dtTriArea2D(portalApex, portalRight, right) <= 0.0f) + { + if (dtVequal(portalApex, portalRight) || dtTriArea2D(portalApex, portalLeft, right) > 0.0f) + { + dtVcopy(portalRight, right); + rightPolyRef = (i+1 < pathSize) ? path[i+1] : 0; + rightPolyType = toType; + rightIndex = i; + } + else + { + // Append portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + stat = appendPortals(apexIndex, leftIndex, portalLeft, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + if (stat != DT_IN_PROGRESS) + return stat; + } + + dtVcopy(portalApex, portalLeft); + apexIndex = leftIndex; + + unsigned char flags = 0; + if (!leftPolyRef) + flags = DT_STRAIGHTPATH_END; + else if (leftPolyType == DT_POLYTYPE_OFFMESH_CONNECTION) + flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION; + dtPolyRef ref = leftPolyRef; + + // Append or update vertex + stat = appendVertex(portalApex, flags, ref, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; + + dtVcopy(portalLeft, portalApex); + dtVcopy(portalRight, portalApex); + leftIndex = apexIndex; + rightIndex = apexIndex; + + // Restart + i = apexIndex; + + continue; + } + } + + // Left vertex. + if (dtTriArea2D(portalApex, portalLeft, left) >= 0.0f) + { + if (dtVequal(portalApex, portalLeft) || dtTriArea2D(portalApex, portalRight, left) < 0.0f) + { + dtVcopy(portalLeft, left); + leftPolyRef = (i+1 < pathSize) ? path[i+1] : 0; + leftPolyType = toType; + leftIndex = i; + } + else + { + // Append portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + stat = appendPortals(apexIndex, rightIndex, portalRight, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + if (stat != DT_IN_PROGRESS) + return stat; + } + + dtVcopy(portalApex, portalRight); + apexIndex = rightIndex; + + unsigned char flags = 0; + if (!rightPolyRef) + flags = DT_STRAIGHTPATH_END; + else if (rightPolyType == DT_POLYTYPE_OFFMESH_CONNECTION) + flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION; + dtPolyRef ref = rightPolyRef; + + // Append or update vertex + stat = appendVertex(portalApex, flags, ref, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + if (stat != DT_IN_PROGRESS) + return stat; + + dtVcopy(portalLeft, portalApex); + dtVcopy(portalRight, portalApex); + leftIndex = apexIndex; + rightIndex = apexIndex; + + // Restart + i = apexIndex; + + continue; + } + } + } + + // Append portals along the current straight path segment. + if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS)) + { + stat = appendPortals(apexIndex, pathSize-1, closestEndPos, path, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath, options); + if (stat != DT_IN_PROGRESS) + return stat; + } + } + + // Ignore status return value as we're just about to return anyway. + appendVertex(closestEndPos, DT_STRAIGHTPATH_END, 0, + straightPath, straightPathFlags, straightPathRefs, + straightPathCount, maxStraightPath); + + return DT_SUCCESS | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0); +} + +/// @par +/// +/// This method is optimized for small delta movement and a small number of +/// polygons. If used for too great a distance, the result set will form an +/// incomplete path. +/// +/// @p resultPos will equal the @p endPos if the end is reached. +/// Otherwise the closest reachable position will be returned. +/// +/// @p resultPos is not projected onto the surface of the navigation +/// mesh. Use #getPolyHeight if this is needed. +/// +/// This method treats the end position in the same manner as +/// the #raycast method. (As a 2D point.) See that method's documentation +/// for details. +/// +/// If the @p visited array is too small to hold the entire result set, it will +/// be filled as far as possible from the start position toward the end +/// position. +/// +dtStatus dtNavMeshQuery::moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos, + const dtQueryFilter* filter, + float* resultPos, dtPolyRef* visited, int* visitedCount, const int maxVisitedSize) const +{ + dtAssert(m_nav); + dtAssert(m_tinyNodePool); + + *visitedCount = 0; + + // Validate input + if (!startRef) + return DT_FAILURE | DT_INVALID_PARAM; + if (!m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; + + dtStatus status = DT_SUCCESS; + + static const int MAX_STACK = 48; + dtNode* stack[MAX_STACK]; + int nstack = 0; + + m_tinyNodePool->clear(); + + dtNode* startNode = m_tinyNodePool->getNode(startRef); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_CLOSED; + stack[nstack++] = startNode; + + float bestPos[3]; + float bestDist = FLT_MAX; + dtNode* bestNode = 0; + dtVcopy(bestPos, startPos); + + // Search constraints + float searchPos[3], searchRadSqr; + dtVlerp(searchPos, startPos, endPos, 0.5f); + searchRadSqr = dtSqr(dtVdist(startPos, endPos)/2.0f + 0.001f); + + float verts[DT_VERTS_PER_POLYGON*3]; + + while (nstack) + { + // Pop front. + dtNode* curNode = stack[0]; + for (int i = 0; i < nstack-1; ++i) + stack[i] = stack[i+1]; + nstack--; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef curRef = curNode->id; + const dtMeshTile* curTile = 0; + const dtPoly* curPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(curRef, &curTile, &curPoly); + + // Collect vertices. + const int nverts = curPoly->vertCount; + for (int i = 0; i < nverts; ++i) + dtVcopy(&verts[i*3], &curTile->verts[curPoly->verts[i]*3]); + + // If target is inside the poly, stop search. + if (dtPointInPolygon(endPos, verts, nverts)) + { + bestNode = curNode; + dtVcopy(bestPos, endPos); + break; + } + + // Find wall edges and find nearest point inside the walls. + for (int i = 0, j = (int)curPoly->vertCount-1; i < (int)curPoly->vertCount; j = i++) + { + // Find links to neighbours. + static const int MAX_NEIS = 8; + int nneis = 0; + dtPolyRef neis[MAX_NEIS]; + + if (curPoly->neis[j] & DT_EXT_LINK) + { + // Tile border. + for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next) + { + const dtLink* link = &curTile->links[k]; + if (link->edge == j) + { + if (link->ref != 0) + { + const dtMeshTile* neiTile = 0; + const dtPoly* neiPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly); + if (filter->passFilter(link->ref, neiTile, neiPoly)) + { + if (nneis < MAX_NEIS) + neis[nneis++] = link->ref; + } + } + } + } + } + else if (curPoly->neis[j]) + { + const unsigned int idx = (unsigned int)(curPoly->neis[j]-1); + const dtPolyRef ref = m_nav->getPolyRefBase(curTile) | idx; + if (filter->passFilter(ref, curTile, &curTile->polys[idx])) + { + // Internal edge, encode id. + neis[nneis++] = ref; + } + } + + if (!nneis) + { + // Wall edge, calc distance. + const float* vj = &verts[j*3]; + const float* vi = &verts[i*3]; + float tseg; + const float distSqr = dtDistancePtSegSqr2D(endPos, vj, vi, tseg); + if (distSqr < bestDist) + { + // Update nearest distance. + dtVlerp(bestPos, vj,vi, tseg); + bestDist = distSqr; + bestNode = curNode; + } + } + else + { + for (int k = 0; k < nneis; ++k) + { + // Skip if no node can be allocated. + dtNode* neighbourNode = m_tinyNodePool->getNode(neis[k]); + if (!neighbourNode) + continue; + // Skip if already visited. + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Skip the link if it is too far from search constraint. + // TODO: Maybe should use getPortalPoints(), but this one is way faster. + const float* vj = &verts[j*3]; + const float* vi = &verts[i*3]; + float tseg; + float distSqr = dtDistancePtSegSqr2D(searchPos, vj, vi, tseg); + if (distSqr > searchRadSqr) + continue; + + // Mark as the node as visited and push to queue. + if (nstack < MAX_STACK) + { + neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode); + neighbourNode->flags |= DT_NODE_CLOSED; + stack[nstack++] = neighbourNode; + } + } + } + } + } + + int n = 0; + if (bestNode) + { + // Reverse the path. + dtNode* prev = 0; + dtNode* node = bestNode; + do + { + dtNode* next = m_tinyNodePool->getNodeAtIdx(node->pidx); + node->pidx = m_tinyNodePool->getNodeIdx(prev); + prev = node; + node = next; + } + while (node); + + // Store result + node = prev; + do + { + visited[n++] = node->id; + if (n >= maxVisitedSize) + { + status |= DT_BUFFER_TOO_SMALL; + break; + } + node = m_tinyNodePool->getNodeAtIdx(node->pidx); + } + while (node); + } + + dtVcopy(resultPos, bestPos); + + *visitedCount = n; + + return status; +} + + +dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right, + unsigned char& fromType, unsigned char& toType) const +{ + dtAssert(m_nav); + + const dtMeshTile* fromTile = 0; + const dtPoly* fromPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly))) + return DT_FAILURE | DT_INVALID_PARAM; + fromType = fromPoly->getType(); + + const dtMeshTile* toTile = 0; + const dtPoly* toPoly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly))) + return DT_FAILURE | DT_INVALID_PARAM; + toType = toPoly->getType(); + + return getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right); +} + +// Returns portal points between two polygons. +dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile, + dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile, + float* left, float* right) const +{ + // Find the link that points to the 'to' polygon. + const dtLink* link = 0; + for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next) + { + if (fromTile->links[i].ref == to) + { + link = &fromTile->links[i]; + break; + } + } + if (!link) + return DT_FAILURE | DT_INVALID_PARAM; + + // Handle off-mesh connections. + if (fromPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + { + // Find link that points to first vertex. + for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next) + { + if (fromTile->links[i].ref == to) + { + const int v = fromTile->links[i].edge; + dtVcopy(left, &fromTile->verts[fromPoly->verts[v]*3]); + dtVcopy(right, &fromTile->verts[fromPoly->verts[v]*3]); + return DT_SUCCESS; + } + } + return DT_FAILURE | DT_INVALID_PARAM; + } + + if (toPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + { + for (unsigned int i = toPoly->firstLink; i != DT_NULL_LINK; i = toTile->links[i].next) + { + if (toTile->links[i].ref == from) + { + const int v = toTile->links[i].edge; + dtVcopy(left, &toTile->verts[toPoly->verts[v]*3]); + dtVcopy(right, &toTile->verts[toPoly->verts[v]*3]); + return DT_SUCCESS; + } + } + return DT_FAILURE | DT_INVALID_PARAM; + } + + // Find portal vertices. + const int v0 = fromPoly->verts[link->edge]; + const int v1 = fromPoly->verts[(link->edge+1) % (int)fromPoly->vertCount]; + dtVcopy(left, &fromTile->verts[v0*3]); + dtVcopy(right, &fromTile->verts[v1*3]); + + // If the link is at tile boundary, dtClamp the vertices to + // the link width. + if (link->side != 0xff) + { + // Unpack portal limits. + if (link->bmin != 0 || link->bmax != 255) + { + const float s = 1.0f/255.0f; + const float tmin = link->bmin*s; + const float tmax = link->bmax*s; + dtVlerp(left, &fromTile->verts[v0*3], &fromTile->verts[v1*3], tmin); + dtVlerp(right, &fromTile->verts[v0*3], &fromTile->verts[v1*3], tmax); + } + } + + return DT_SUCCESS; +} + +// Returns edge mid point between two polygons. +dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mid) const +{ + float left[3], right[3]; + unsigned char fromType, toType; + if (dtStatusFailed(getPortalPoints(from, to, left,right, fromType, toType))) + return DT_FAILURE | DT_INVALID_PARAM; + mid[0] = (left[0]+right[0])*0.5f; + mid[1] = (left[1]+right[1])*0.5f; + mid[2] = (left[2]+right[2])*0.5f; + return DT_SUCCESS; +} + +dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile, + dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile, + float* mid) const +{ + float left[3], right[3]; + if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right))) + return DT_FAILURE | DT_INVALID_PARAM; + mid[0] = (left[0]+right[0])*0.5f; + mid[1] = (left[1]+right[1])*0.5f; + mid[2] = (left[2]+right[2])*0.5f; + return DT_SUCCESS; +} + + + +/// @par +/// +/// This method is meant to be used for quick, short distance checks. +/// +/// If the path array is too small to hold the result, it will be filled as +/// far as possible from the start postion toward the end position. +/// +/// <b>Using the Hit Parameter (t)</b> +/// +/// If the hit parameter is a very high value (FLT_MAX), then the ray has hit +/// the end position. In this case the path represents a valid corridor to the +/// end position and the value of @p hitNormal is undefined. +/// +/// If the hit parameter is zero, then the start position is on the wall that +/// was hit and the value of @p hitNormal is undefined. +/// +/// If 0 < t < 1.0 then the following applies: +/// +/// @code +/// distanceToHitBorder = distanceToEndPosition * t +/// hitPoint = startPos + (endPos - startPos) * t +/// @endcode +/// +/// <b>Use Case Restriction</b> +/// +/// The raycast ignores the y-value of the end position. (2D check.) This +/// places significant limits on how it can be used. For example: +/// +/// Consider a scene where there is a main floor with a second floor balcony +/// that hangs over the main floor. So the first floor mesh extends below the +/// balcony mesh. The start position is somewhere on the first floor. The end +/// position is on the balcony. +/// +/// The raycast will search toward the end position along the first floor mesh. +/// If it reaches the end position's xz-coordinates it will indicate FLT_MAX +/// (no wall hit), meaning it reached the end position. This is one example of why +/// this method is meant for short distance checks. +/// +dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, const float* endPos, + const dtQueryFilter* filter, + float* t, float* hitNormal, dtPolyRef* path, int* pathCount, const int maxPath) const +{ + dtRaycastHit hit; + hit.path = path; + hit.maxPath = maxPath; + + dtStatus status = raycast(startRef, startPos, endPos, filter, 0, &hit); + + *t = hit.t; + if (hitNormal) + dtVcopy(hitNormal, hit.hitNormal); + if (pathCount) + *pathCount = hit.pathCount; + + return status; +} + + +/// @par +/// +/// This method is meant to be used for quick, short distance checks. +/// +/// If the path array is too small to hold the result, it will be filled as +/// far as possible from the start postion toward the end position. +/// +/// <b>Using the Hit Parameter t of RaycastHit</b> +/// +/// If the hit parameter is a very high value (FLT_MAX), then the ray has hit +/// the end position. In this case the path represents a valid corridor to the +/// end position and the value of @p hitNormal is undefined. +/// +/// If the hit parameter is zero, then the start position is on the wall that +/// was hit and the value of @p hitNormal is undefined. +/// +/// If 0 < t < 1.0 then the following applies: +/// +/// @code +/// distanceToHitBorder = distanceToEndPosition * t +/// hitPoint = startPos + (endPos - startPos) * t +/// @endcode +/// +/// <b>Use Case Restriction</b> +/// +/// The raycast ignores the y-value of the end position. (2D check.) This +/// places significant limits on how it can be used. For example: +/// +/// Consider a scene where there is a main floor with a second floor balcony +/// that hangs over the main floor. So the first floor mesh extends below the +/// balcony mesh. The start position is somewhere on the first floor. The end +/// position is on the balcony. +/// +/// The raycast will search toward the end position along the first floor mesh. +/// If it reaches the end position's xz-coordinates it will indicate FLT_MAX +/// (no wall hit), meaning it reached the end position. This is one example of why +/// this method is meant for short distance checks. +/// +dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, const float* endPos, + const dtQueryFilter* filter, const unsigned int options, + dtRaycastHit* hit, dtPolyRef prevRef) const +{ + dtAssert(m_nav); + + hit->t = 0; + hit->pathCount = 0; + hit->pathCost = 0; + + // Validate input + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; + if (prevRef && !m_nav->isValidPolyRef(prevRef)) + return DT_FAILURE | DT_INVALID_PARAM; + + float dir[3], curPos[3], lastPos[3]; + float verts[DT_VERTS_PER_POLYGON*3+3]; + int n = 0; + + dtVcopy(curPos, startPos); + dtVsub(dir, endPos, startPos); + dtVset(hit->hitNormal, 0, 0, 0); + + dtStatus status = DT_SUCCESS; + + const dtMeshTile* prevTile, *tile, *nextTile; + const dtPoly* prevPoly, *poly, *nextPoly; + dtPolyRef curRef; + + // The API input has been checked already, skip checking internal data. + curRef = startRef; + tile = 0; + poly = 0; + m_nav->getTileAndPolyByRefUnsafe(curRef, &tile, &poly); + nextTile = prevTile = tile; + nextPoly = prevPoly = poly; + if (prevRef) + m_nav->getTileAndPolyByRefUnsafe(prevRef, &prevTile, &prevPoly); + + while (curRef) + { + // Cast ray against current polygon. + + // Collect vertices. + int nv = 0; + for (int i = 0; i < (int)poly->vertCount; ++i) + { + dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]); + nv++; + } + + float tmin, tmax; + int segMin, segMax; + if (!dtIntersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax)) + { + // Could not hit the polygon, keep the old t and report hit. + hit->pathCount = n; + return status; + } + + hit->hitEdgeIndex = segMax; + + // Keep track of furthest t so far. + if (tmax > hit->t) + hit->t = tmax; + + // Store visited polygons. + if (n < hit->maxPath) + hit->path[n++] = curRef; + else + status |= DT_BUFFER_TOO_SMALL; + + // Ray end is completely inside the polygon. + if (segMax == -1) + { + hit->t = FLT_MAX; + hit->pathCount = n; + + // add the cost + if (options & DT_RAYCAST_USE_COSTS) + hit->pathCost += filter->getCost(curPos, endPos, prevRef, prevTile, prevPoly, curRef, tile, poly, curRef, tile, poly); + return status; + } + + // Follow neighbours. + dtPolyRef nextRef = 0; + + for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next) + { + const dtLink* link = &tile->links[i]; + + // Find link which contains this edge. + if ((int)link->edge != segMax) + continue; + + // Get pointer to the next polygon. + nextTile = 0; + nextPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(link->ref, &nextTile, &nextPoly); + + // Skip off-mesh connections. + if (nextPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + + // Skip links based on filter. + if (!filter->passFilter(link->ref, nextTile, nextPoly)) + continue; + + // If the link is internal, just return the ref. + if (link->side == 0xff) + { + nextRef = link->ref; + break; + } + + // If the link is at tile boundary, + + // Check if the link spans the whole edge, and accept. + if (link->bmin == 0 && link->bmax == 255) + { + nextRef = link->ref; + break; + } + + // Check for partial edge links. + const int v0 = poly->verts[link->edge]; + const int v1 = poly->verts[(link->edge+1) % poly->vertCount]; + const float* left = &tile->verts[v0*3]; + const float* right = &tile->verts[v1*3]; + + // Check that the intersection lies inside the link portal. + if (link->side == 0 || link->side == 4) + { + // Calculate link size. + const float s = 1.0f/255.0f; + float lmin = left[2] + (right[2] - left[2])*(link->bmin*s); + float lmax = left[2] + (right[2] - left[2])*(link->bmax*s); + if (lmin > lmax) dtSwap(lmin, lmax); + + // Find Z intersection. + float z = startPos[2] + (endPos[2]-startPos[2])*tmax; + if (z >= lmin && z <= lmax) + { + nextRef = link->ref; + break; + } + } + else if (link->side == 2 || link->side == 6) + { + // Calculate link size. + const float s = 1.0f/255.0f; + float lmin = left[0] + (right[0] - left[0])*(link->bmin*s); + float lmax = left[0] + (right[0] - left[0])*(link->bmax*s); + if (lmin > lmax) dtSwap(lmin, lmax); + + // Find X intersection. + float x = startPos[0] + (endPos[0]-startPos[0])*tmax; + if (x >= lmin && x <= lmax) + { + nextRef = link->ref; + break; + } + } + } + + // add the cost + if (options & DT_RAYCAST_USE_COSTS) + { + // compute the intersection point at the furthest end of the polygon + // and correct the height (since the raycast moves in 2d) + dtVcopy(lastPos, curPos); + dtVmad(curPos, startPos, dir, hit->t); + float* e1 = &verts[segMax*3]; + float* e2 = &verts[((segMax+1)%nv)*3]; + float eDir[3], diff[3]; + dtVsub(eDir, e2, e1); + dtVsub(diff, curPos, e1); + float s = dtSqr(eDir[0]) > dtSqr(eDir[2]) ? diff[0] / eDir[0] : diff[2] / eDir[2]; + curPos[1] = e1[1] + eDir[1] * s; + + hit->pathCost += filter->getCost(lastPos, curPos, prevRef, prevTile, prevPoly, curRef, tile, poly, nextRef, nextTile, nextPoly); + } + + if (!nextRef) + { + // No neighbour, we hit a wall. + + // Calculate hit normal. + const int a = segMax; + const int b = segMax+1 < nv ? segMax+1 : 0; + const float* va = &verts[a*3]; + const float* vb = &verts[b*3]; + const float dx = vb[0] - va[0]; + const float dz = vb[2] - va[2]; + hit->hitNormal[0] = dz; + hit->hitNormal[1] = 0; + hit->hitNormal[2] = -dx; + dtVnormalize(hit->hitNormal); + + hit->pathCount = n; + return status; + } + + // No hit, advance to neighbour polygon. + prevRef = curRef; + curRef = nextRef; + prevTile = tile; + tile = nextTile; + prevPoly = poly; + poly = nextPoly; + } + + hit->pathCount = n; + + return status; +} + +/// @par +/// +/// At least one result array must be provided. +/// +/// The order of the result set is from least to highest cost to reach the polygon. +/// +/// A common use case for this method is to perform Dijkstra searches. +/// Candidate polygons are found by searching the graph beginning at the start polygon. +/// +/// If a polygon is not found via the graph search, even if it intersects the +/// search circle, it will not be included in the result set. For example: +/// +/// polyA is the start polygon. +/// polyB shares an edge with polyA. (Is adjacent.) +/// polyC shares an edge with polyB, but not with polyA +/// Even if the search circle overlaps polyC, it will not be included in the +/// result set unless polyB is also in the set. +/// +/// The value of the center point is used as the start position for cost +/// calculations. It is not projected onto the surface of the mesh, so its +/// y-value will effect the costs. +/// +/// Intersection tests occur in 2D. All polygons and the search circle are +/// projected onto the xz-plane. So the y-value of the center point does not +/// effect intersection tests. +/// +/// If the result arrays are to small to hold the entire result set, they will be +/// filled to capacity. +/// +dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* centerPos, const float radius, + const dtQueryFilter* filter, + dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost, + int* resultCount, const int maxResult) const +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + *resultCount = 0; + + // Validate input + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; + + m_nodePool->clear(); + m_openList->clear(); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, centerPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + dtStatus status = DT_SUCCESS; + + int n = 0; + + const float radiusSqr = dtSqr(radius); + + while (!m_openList->empty()) + { + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly); + + // Get parent poly and tile. + dtPolyRef parentRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + if (bestNode->pidx) + parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; + if (parentRef) + m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly); + + if (n < maxResult) + { + if (resultRef) + resultRef[n] = bestRef; + if (resultParent) + resultParent[n] = parentRef; + if (resultCost) + resultCost[n] = bestNode->total; + ++n; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + const dtLink* link = &bestTile->links[i]; + dtPolyRef neighbourRef = link->ref; + // Skip invalid neighbours and do not follow back to parent. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Expand to neighbour + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + // Do not advance if the polygon is excluded by the filter. + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // Find edge and calc distance to the edge. + float va[3], vb[3]; + if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) + continue; + + // If the circle is not touching the next polygon, skip it. + float tseg; + float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); + if (distSqr > radiusSqr) + continue; + + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); + if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; + continue; + } + + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Cost + if (neighbourNode->flags == 0) + dtVlerp(neighbourNode->pos, va, vb, 0.5f); + + float cost = filter->getCost( + bestNode->pos, neighbourNode->pos, + parentRef, parentTile, parentPoly, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly); + + const float total = bestNode->total + cost; + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + + neighbourNode->id = neighbourRef; + neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); + neighbourNode->total = total; + + if (neighbourNode->flags & DT_NODE_OPEN) + { + m_openList->modify(neighbourNode); + } + else + { + neighbourNode->flags = DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + } + } + + *resultCount = n; + + return status; +} + +/// @par +/// +/// The order of the result set is from least to highest cost. +/// +/// At least one result array must be provided. +/// +/// A common use case for this method is to perform Dijkstra searches. +/// Candidate polygons are found by searching the graph beginning at the start +/// polygon. +/// +/// The same intersection test restrictions that apply to findPolysAroundCircle() +/// method apply to this method. +/// +/// The 3D centroid of the search polygon is used as the start position for cost +/// calculations. +/// +/// Intersection tests occur in 2D. All polygons are projected onto the +/// xz-plane. So the y-values of the vertices do not effect intersection tests. +/// +/// If the result arrays are is too small to hold the entire result set, they will +/// be filled to capacity. +/// +dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* verts, const int nverts, + const dtQueryFilter* filter, + dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost, + int* resultCount, const int maxResult) const +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + *resultCount = 0; + + // Validate input + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; + + m_nodePool->clear(); + m_openList->clear(); + + float centerPos[3] = {0,0,0}; + for (int i = 0; i < nverts; ++i) + dtVadd(centerPos,centerPos,&verts[i*3]); + dtVscale(centerPos,centerPos,1.0f/nverts); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, centerPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + dtStatus status = DT_SUCCESS; + + int n = 0; + + while (!m_openList->empty()) + { + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly); + + // Get parent poly and tile. + dtPolyRef parentRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + if (bestNode->pidx) + parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; + if (parentRef) + m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly); + + if (n < maxResult) + { + if (resultRef) + resultRef[n] = bestRef; + if (resultParent) + resultParent[n] = parentRef; + if (resultCost) + resultCost[n] = bestNode->total; + + ++n; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + const dtLink* link = &bestTile->links[i]; + dtPolyRef neighbourRef = link->ref; + // Skip invalid neighbours and do not follow back to parent. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Expand to neighbour + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + // Do not advance if the polygon is excluded by the filter. + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // Find edge and calc distance to the edge. + float va[3], vb[3]; + if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) + continue; + + // If the poly is not touching the edge to the next polygon, skip the connection it. + float tmin, tmax; + int segMin, segMax; + if (!dtIntersectSegmentPoly2D(va, vb, verts, nverts, tmin, tmax, segMin, segMax)) + continue; + if (tmin > 1.0f || tmax < 0.0f) + continue; + + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); + if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; + continue; + } + + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Cost + if (neighbourNode->flags == 0) + dtVlerp(neighbourNode->pos, va, vb, 0.5f); + + float cost = filter->getCost( + bestNode->pos, neighbourNode->pos, + parentRef, parentTile, parentPoly, + bestRef, bestTile, bestPoly, + neighbourRef, neighbourTile, neighbourPoly); + + const float total = bestNode->total + cost; + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + + neighbourNode->id = neighbourRef; + neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); + neighbourNode->total = total; + + if (neighbourNode->flags & DT_NODE_OPEN) + { + m_openList->modify(neighbourNode); + } + else + { + neighbourNode->flags = DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + } + } + + *resultCount = n; + + return status; +} + +dtStatus dtNavMeshQuery::getPathFromDijkstraSearch(dtPolyRef endRef, dtPolyRef* path, int* pathCount, int maxPath) const +{ + if (!m_nav->isValidPolyRef(endRef) || !path || !pathCount || maxPath < 0) + return DT_FAILURE | DT_INVALID_PARAM; + + *pathCount = 0; + + dtNode* endNode; + if (m_nodePool->findNodes(endRef, &endNode, 1) != 1 || + (endNode->flags & DT_NODE_CLOSED) == 0) + return DT_FAILURE | DT_INVALID_PARAM; + + return getPathToNode(endNode, path, pathCount, maxPath); +} + +/// @par +/// +/// This method is optimized for a small search radius and small number of result +/// polygons. +/// +/// Candidate polygons are found by searching the navigation graph beginning at +/// the start polygon. +/// +/// The same intersection test restrictions that apply to the findPolysAroundCircle +/// mehtod applies to this method. +/// +/// The value of the center point is used as the start point for cost calculations. +/// It is not projected onto the surface of the mesh, so its y-value will effect +/// the costs. +/// +/// Intersection tests occur in 2D. All polygons and the search circle are +/// projected onto the xz-plane. So the y-value of the center point does not +/// effect intersection tests. +/// +/// If the result arrays are is too small to hold the entire result set, they will +/// be filled to capacity. +/// +dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* centerPos, const float radius, + const dtQueryFilter* filter, + dtPolyRef* resultRef, dtPolyRef* resultParent, + int* resultCount, const int maxResult) const +{ + dtAssert(m_nav); + dtAssert(m_tinyNodePool); + + *resultCount = 0; + + // Validate input + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; + + static const int MAX_STACK = 48; + dtNode* stack[MAX_STACK]; + int nstack = 0; + + m_tinyNodePool->clear(); + + dtNode* startNode = m_tinyNodePool->getNode(startRef); + startNode->pidx = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_CLOSED; + stack[nstack++] = startNode; + + const float radiusSqr = dtSqr(radius); + + float pa[DT_VERTS_PER_POLYGON*3]; + float pb[DT_VERTS_PER_POLYGON*3]; + + dtStatus status = DT_SUCCESS; + + int n = 0; + if (n < maxResult) + { + resultRef[n] = startNode->id; + if (resultParent) + resultParent[n] = 0; + ++n; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + + while (nstack) + { + // Pop front. + dtNode* curNode = stack[0]; + for (int i = 0; i < nstack-1; ++i) + stack[i] = stack[i+1]; + nstack--; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef curRef = curNode->id; + const dtMeshTile* curTile = 0; + const dtPoly* curPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(curRef, &curTile, &curPoly); + + for (unsigned int i = curPoly->firstLink; i != DT_NULL_LINK; i = curTile->links[i].next) + { + const dtLink* link = &curTile->links[i]; + dtPolyRef neighbourRef = link->ref; + // Skip invalid neighbours. + if (!neighbourRef) + continue; + + // Skip if cannot alloca more nodes. + dtNode* neighbourNode = m_tinyNodePool->getNode(neighbourRef); + if (!neighbourNode) + continue; + // Skip visited. + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Expand to neighbour + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + // Skip off-mesh connections. + if (neighbourPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + + // Do not advance if the polygon is excluded by the filter. + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + // Find edge and calc distance to the edge. + float va[3], vb[3]; + if (!getPortalPoints(curRef, curPoly, curTile, neighbourRef, neighbourPoly, neighbourTile, va, vb)) + continue; + + // If the circle is not touching the next polygon, skip it. + float tseg; + float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); + if (distSqr > radiusSqr) + continue; + + // Mark node visited, this is done before the overlap test so that + // we will not visit the poly again if the test fails. + neighbourNode->flags |= DT_NODE_CLOSED; + neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode); + + // Check that the polygon does not collide with existing polygons. + + // Collect vertices of the neighbour poly. + const int npa = neighbourPoly->vertCount; + for (int k = 0; k < npa; ++k) + dtVcopy(&pa[k*3], &neighbourTile->verts[neighbourPoly->verts[k]*3]); + + bool overlap = false; + for (int j = 0; j < n; ++j) + { + dtPolyRef pastRef = resultRef[j]; + + // Connected polys do not overlap. + bool connected = false; + for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next) + { + if (curTile->links[k].ref == pastRef) + { + connected = true; + break; + } + } + if (connected) + continue; + + // Potentially overlapping. + const dtMeshTile* pastTile = 0; + const dtPoly* pastPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(pastRef, &pastTile, &pastPoly); + + // Get vertices and test overlap + const int npb = pastPoly->vertCount; + for (int k = 0; k < npb; ++k) + dtVcopy(&pb[k*3], &pastTile->verts[pastPoly->verts[k]*3]); + + if (dtOverlapPolyPoly2D(pa,npa, pb,npb)) + { + overlap = true; + break; + } + } + if (overlap) + continue; + + // This poly is fine, store and advance to the poly. + if (n < maxResult) + { + resultRef[n] = neighbourRef; + if (resultParent) + resultParent[n] = curRef; + ++n; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + + if (nstack < MAX_STACK) + { + stack[nstack++] = neighbourNode; + } + } + } + + *resultCount = n; + + return status; +} + + +struct dtSegInterval +{ + dtPolyRef ref; + short tmin, tmax; +}; + +static void insertInterval(dtSegInterval* ints, int& nints, const int maxInts, + const short tmin, const short tmax, const dtPolyRef ref) +{ + if (nints+1 > maxInts) return; + // Find insertion point. + int idx = 0; + while (idx < nints) + { + if (tmax <= ints[idx].tmin) + break; + idx++; + } + // Move current results. + if (nints-idx) + memmove(ints+idx+1, ints+idx, sizeof(dtSegInterval)*(nints-idx)); + // Store + ints[idx].ref = ref; + ints[idx].tmin = tmin; + ints[idx].tmax = tmax; + nints++; +} + +/// @par +/// +/// If the @p segmentRefs parameter is provided, then all polygon segments will be returned. +/// Otherwise only the wall segments are returned. +/// +/// A segment that is normally a portal will be included in the result set as a +/// wall if the @p filter results in the neighbor polygon becoomming impassable. +/// +/// The @p segmentVerts and @p segmentRefs buffers should normally be sized for the +/// maximum segments per polygon of the source navigation mesh. +/// +dtStatus dtNavMeshQuery::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* filter, + float* segmentVerts, dtPolyRef* segmentRefs, int* segmentCount, + const int maxSegments) const +{ + dtAssert(m_nav); + + *segmentCount = 0; + + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly))) + return DT_FAILURE | DT_INVALID_PARAM; + + int n = 0; + static const int MAX_INTERVAL = 16; + dtSegInterval ints[MAX_INTERVAL]; + int nints; + + const bool storePortals = segmentRefs != 0; + + dtStatus status = DT_SUCCESS; + + for (int i = 0, j = (int)poly->vertCount-1; i < (int)poly->vertCount; j = i++) + { + // Skip non-solid edges. + nints = 0; + if (poly->neis[j] & DT_EXT_LINK) + { + // Tile border. + for (unsigned int k = poly->firstLink; k != DT_NULL_LINK; k = tile->links[k].next) + { + const dtLink* link = &tile->links[k]; + if (link->edge == j) + { + if (link->ref != 0) + { + const dtMeshTile* neiTile = 0; + const dtPoly* neiPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly); + if (filter->passFilter(link->ref, neiTile, neiPoly)) + { + insertInterval(ints, nints, MAX_INTERVAL, link->bmin, link->bmax, link->ref); + } + } + } + } + } + else + { + // Internal edge + dtPolyRef neiRef = 0; + if (poly->neis[j]) + { + const unsigned int idx = (unsigned int)(poly->neis[j]-1); + neiRef = m_nav->getPolyRefBase(tile) | idx; + if (!filter->passFilter(neiRef, tile, &tile->polys[idx])) + neiRef = 0; + } + + // If the edge leads to another polygon and portals are not stored, skip. + if (neiRef != 0 && !storePortals) + continue; + + if (n < maxSegments) + { + const float* vj = &tile->verts[poly->verts[j]*3]; + const float* vi = &tile->verts[poly->verts[i]*3]; + float* seg = &segmentVerts[n*6]; + dtVcopy(seg+0, vj); + dtVcopy(seg+3, vi); + if (segmentRefs) + segmentRefs[n] = neiRef; + n++; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + + continue; + } + + // Add sentinels + insertInterval(ints, nints, MAX_INTERVAL, -1, 0, 0); + insertInterval(ints, nints, MAX_INTERVAL, 255, 256, 0); + + // Store segments. + const float* vj = &tile->verts[poly->verts[j]*3]; + const float* vi = &tile->verts[poly->verts[i]*3]; + for (int k = 1; k < nints; ++k) + { + // Portal segment. + if (storePortals && ints[k].ref) + { + const float tmin = ints[k].tmin/255.0f; + const float tmax = ints[k].tmax/255.0f; + if (n < maxSegments) + { + float* seg = &segmentVerts[n*6]; + dtVlerp(seg+0, vj,vi, tmin); + dtVlerp(seg+3, vj,vi, tmax); + if (segmentRefs) + segmentRefs[n] = ints[k].ref; + n++; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + } + + // Wall segment. + const int imin = ints[k-1].tmax; + const int imax = ints[k].tmin; + if (imin != imax) + { + const float tmin = imin/255.0f; + const float tmax = imax/255.0f; + if (n < maxSegments) + { + float* seg = &segmentVerts[n*6]; + dtVlerp(seg+0, vj,vi, tmin); + dtVlerp(seg+3, vj,vi, tmax); + if (segmentRefs) + segmentRefs[n] = 0; + n++; + } + else + { + status |= DT_BUFFER_TOO_SMALL; + } + } + } + } + + *segmentCount = n; + + return status; +} + +/// @par +/// +/// @p hitPos is not adjusted using the height detail data. +/// +/// @p hitDist will equal the search radius if there is no wall within the +/// radius. In this case the values of @p hitPos and @p hitNormal are +/// undefined. +/// +/// The normal will become unpredicable if @p hitDist is a very small number. +/// +dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* centerPos, const float maxRadius, + const dtQueryFilter* filter, + float* hitDist, float* hitPos, float* hitNormal) const +{ + dtAssert(m_nav); + dtAssert(m_nodePool); + dtAssert(m_openList); + + // Validate input + if (!startRef || !m_nav->isValidPolyRef(startRef)) + return DT_FAILURE | DT_INVALID_PARAM; + + m_nodePool->clear(); + m_openList->clear(); + + dtNode* startNode = m_nodePool->getNode(startRef); + dtVcopy(startNode->pos, centerPos); + startNode->pidx = 0; + startNode->cost = 0; + startNode->total = 0; + startNode->id = startRef; + startNode->flags = DT_NODE_OPEN; + m_openList->push(startNode); + + float radiusSqr = dtSqr(maxRadius); + + dtStatus status = DT_SUCCESS; + + while (!m_openList->empty()) + { + dtNode* bestNode = m_openList->pop(); + bestNode->flags &= ~DT_NODE_OPEN; + bestNode->flags |= DT_NODE_CLOSED; + + // Get poly and tile. + // The API input has been cheked already, skip checking internal data. + const dtPolyRef bestRef = bestNode->id; + const dtMeshTile* bestTile = 0; + const dtPoly* bestPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly); + + // Get parent poly and tile. + dtPolyRef parentRef = 0; + const dtMeshTile* parentTile = 0; + const dtPoly* parentPoly = 0; + if (bestNode->pidx) + parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id; + if (parentRef) + m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly); + + // Hit test walls. + for (int i = 0, j = (int)bestPoly->vertCount-1; i < (int)bestPoly->vertCount; j = i++) + { + // Skip non-solid edges. + if (bestPoly->neis[j] & DT_EXT_LINK) + { + // Tile border. + bool solid = true; + for (unsigned int k = bestPoly->firstLink; k != DT_NULL_LINK; k = bestTile->links[k].next) + { + const dtLink* link = &bestTile->links[k]; + if (link->edge == j) + { + if (link->ref != 0) + { + const dtMeshTile* neiTile = 0; + const dtPoly* neiPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly); + if (filter->passFilter(link->ref, neiTile, neiPoly)) + solid = false; + } + break; + } + } + if (!solid) continue; + } + else if (bestPoly->neis[j]) + { + // Internal edge + const unsigned int idx = (unsigned int)(bestPoly->neis[j]-1); + const dtPolyRef ref = m_nav->getPolyRefBase(bestTile) | idx; + if (filter->passFilter(ref, bestTile, &bestTile->polys[idx])) + continue; + } + + // Calc distance to the edge. + const float* vj = &bestTile->verts[bestPoly->verts[j]*3]; + const float* vi = &bestTile->verts[bestPoly->verts[i]*3]; + float tseg; + float distSqr = dtDistancePtSegSqr2D(centerPos, vj, vi, tseg); + + // Edge is too far, skip. + if (distSqr > radiusSqr) + continue; + + // Hit wall, update radius. + radiusSqr = distSqr; + // Calculate hit pos. + hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg; + hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg; + hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg; + } + + for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next) + { + const dtLink* link = &bestTile->links[i]; + dtPolyRef neighbourRef = link->ref; + // Skip invalid neighbours and do not follow back to parent. + if (!neighbourRef || neighbourRef == parentRef) + continue; + + // Expand to neighbour. + const dtMeshTile* neighbourTile = 0; + const dtPoly* neighbourPoly = 0; + m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly); + + // Skip off-mesh connections. + if (neighbourPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION) + continue; + + // Calc distance to the edge. + const float* va = &bestTile->verts[bestPoly->verts[link->edge]*3]; + const float* vb = &bestTile->verts[bestPoly->verts[(link->edge+1) % bestPoly->vertCount]*3]; + float tseg; + float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg); + + // If the circle is not touching the next polygon, skip it. + if (distSqr > radiusSqr) + continue; + + if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly)) + continue; + + dtNode* neighbourNode = m_nodePool->getNode(neighbourRef); + if (!neighbourNode) + { + status |= DT_OUT_OF_NODES; + continue; + } + + if (neighbourNode->flags & DT_NODE_CLOSED) + continue; + + // Cost + if (neighbourNode->flags == 0) + { + getEdgeMidPoint(bestRef, bestPoly, bestTile, + neighbourRef, neighbourPoly, neighbourTile, neighbourNode->pos); + } + + const float total = bestNode->total + dtVdist(bestNode->pos, neighbourNode->pos); + + // The node is already in open list and the new result is worse, skip. + if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total) + continue; + + neighbourNode->id = neighbourRef; + neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED); + neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode); + neighbourNode->total = total; + + if (neighbourNode->flags & DT_NODE_OPEN) + { + m_openList->modify(neighbourNode); + } + else + { + neighbourNode->flags |= DT_NODE_OPEN; + m_openList->push(neighbourNode); + } + } + } + + // Calc hit normal. + dtVsub(hitNormal, centerPos, hitPos); + dtVnormalize(hitNormal); + + *hitDist = sqrtf(radiusSqr); + + return status; +} + +bool dtNavMeshQuery::isValidPolyRef(dtPolyRef ref, const dtQueryFilter* filter) const +{ + const dtMeshTile* tile = 0; + const dtPoly* poly = 0; + dtStatus status = m_nav->getTileAndPolyByRef(ref, &tile, &poly); + // If cannot get polygon, assume it does not exists and boundary is invalid. + if (dtStatusFailed(status)) + return false; + // If cannot pass filter, assume flags has changed and boundary is invalid. + if (!filter->passFilter(ref, tile, poly)) + return false; + return true; +} + +/// @par +/// +/// The closed list is the list of polygons that were fully evaluated during +/// the last navigation graph search. (A* or Dijkstra) +/// +bool dtNavMeshQuery::isInClosedList(dtPolyRef ref) const +{ + if (!m_nodePool) return false; + + dtNode* nodes[DT_MAX_STATES_PER_NODE]; + int n= m_nodePool->findNodes(ref, nodes, DT_MAX_STATES_PER_NODE); + + for (int i=0; i<n; i++) + { + if (nodes[i]->flags & DT_NODE_CLOSED) + return true; + } + + return false; +} diff --git a/deps/recastnavigation/Detour/Source/DetourNode.cpp b/deps/recastnavigation/Detour/Source/DetourNode.cpp new file mode 100644 index 0000000000..48abbba6b5 --- /dev/null +++ b/deps/recastnavigation/Detour/Source/DetourNode.cpp @@ -0,0 +1,200 @@ +// +// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org +// +// This software is provided 'as-is', without any express or implied +// warranty. In no event will the authors be held liable for any damages +// arising from the use of this software. +// Permission is granted to anyone to use this software for any purpose, +// including commercial applications, and to alter it and redistribute it +// freely, subject to the following restrictions: +// 1. The origin of this software must not be misrepresented; you must not +// claim that you wrote the original software. If you use this software +// in a product, an acknowledgment in the product documentation would be +// appreciated but is not required. +// 2. Altered source versions must be plainly marked as such, and must not be +// misrepresented as being the original software. +// 3. This notice may not be removed or altered from any source distribution. +// + +#include "DetourNode.h" +#include "DetourAlloc.h" +#include "DetourAssert.h" +#include "DetourCommon.h" +#include <string.h> + +#ifdef DT_POLYREF64 +// From Thomas Wang, https://gist.github.com/badboy/6267743 +inline unsigned int dtHashRef(dtPolyRef a) +{ + a = (~a) + (a << 18); // a = (a << 18) - a - 1; + a = a ^ (a >> 31); + a = a * 21; // a = (a + (a << 2)) + (a << 4); + a = a ^ (a >> 11); + a = a + (a << 6); + a = a ^ (a >> 22); + return (unsigned int)a; +} +#else +inline unsigned int dtHashRef(dtPolyRef a) +{ + a += ~(a<<15); + a ^= (a>>10); + a += (a<<3); + a ^= (a>>6); + a += ~(a<<11); + a ^= (a>>16); + return (unsigned int)a; +} +#endif + +////////////////////////////////////////////////////////////////////////////////////////// +dtNodePool::dtNodePool(int maxNodes, int hashSize) : + m_nodes(0), + m_first(0), + m_next(0), + m_maxNodes(maxNodes), + m_hashSize(hashSize), + m_nodeCount(0) +{ + dtAssert(dtNextPow2(m_hashSize) == (unsigned int)m_hashSize); + // pidx is special as 0 means "none" and 1 is the first node. For that reason + // we have 1 fewer nodes available than the number of values it can contain. + dtAssert(m_maxNodes > 0 && m_maxNodes <= DT_NULL_IDX && m_maxNodes <= (1 << DT_NODE_PARENT_BITS) - 1); + + m_nodes = (dtNode*)dtAlloc(sizeof(dtNode)*m_maxNodes, DT_ALLOC_PERM); + m_next = (dtNodeIndex*)dtAlloc(sizeof(dtNodeIndex)*m_maxNodes, DT_ALLOC_PERM); + m_first = (dtNodeIndex*)dtAlloc(sizeof(dtNodeIndex)*hashSize, DT_ALLOC_PERM); + + dtAssert(m_nodes); + dtAssert(m_next); + dtAssert(m_first); + + memset(m_first, 0xff, sizeof(dtNodeIndex)*m_hashSize); + memset(m_next, 0xff, sizeof(dtNodeIndex)*m_maxNodes); +} + +dtNodePool::~dtNodePool() +{ + dtFree(m_nodes); + dtFree(m_next); + dtFree(m_first); +} + +void dtNodePool::clear() +{ + memset(m_first, 0xff, sizeof(dtNodeIndex)*m_hashSize); + m_nodeCount = 0; +} + +unsigned int dtNodePool::findNodes(dtPolyRef id, dtNode** nodes, const int maxNodes) +{ + int n = 0; + unsigned int bucket = dtHashRef(id) & (m_hashSize-1); + dtNodeIndex i = m_first[bucket]; + while (i != DT_NULL_IDX) + { + if (m_nodes[i].id == id) + { + if (n >= maxNodes) + return n; + nodes[n++] = &m_nodes[i]; + } + i = m_next[i]; + } + + return n; +} + +dtNode* dtNodePool::findNode(dtPolyRef id, unsigned char state) +{ + unsigned int bucket = dtHashRef(id) & (m_hashSize-1); + dtNodeIndex i = m_first[bucket]; + while (i != DT_NULL_IDX) + { + if (m_nodes[i].id == id && m_nodes[i].state == state) + return &m_nodes[i]; + i = m_next[i]; + } + return 0; +} + +dtNode* dtNodePool::getNode(dtPolyRef id, unsigned char state) +{ + unsigned int bucket = dtHashRef(id) & (m_hashSize-1); + dtNodeIndex i = m_first[bucket]; + dtNode* node = 0; + while (i != DT_NULL_IDX) + { + if (m_nodes[i].id == id && m_nodes[i].state == state) + return &m_nodes[i]; + i = m_next[i]; + } + + if (m_nodeCount >= m_maxNodes) + return 0; + + i = (dtNodeIndex)m_nodeCount; + m_nodeCount++; + + // Init node + node = &m_nodes[i]; + node->pidx = 0; + node->cost = 0; + node->total = 0; + node->id = id; + node->state = state; + node->flags = 0; + + m_next[i] = m_first[bucket]; + m_first[bucket] = i; + + return node; +} + + +////////////////////////////////////////////////////////////////////////////////////////// +dtNodeQueue::dtNodeQueue(int n) : + m_heap(0), + m_capacity(n), + m_size(0) +{ + dtAssert(m_capacity > 0); + + m_heap = (dtNode**)dtAlloc(sizeof(dtNode*)*(m_capacity+1), DT_ALLOC_PERM); + dtAssert(m_heap); +} + +dtNodeQueue::~dtNodeQueue() +{ + dtFree(m_heap); +} + +void dtNodeQueue::bubbleUp(int i, dtNode* node) +{ + int parent = (i-1)/2; + // note: (index > 0) means there is a parent + while ((i > 0) && (m_heap[parent]->total > node->total)) + { + m_heap[i] = m_heap[parent]; + i = parent; + parent = (i-1)/2; + } + m_heap[i] = node; +} + +void dtNodeQueue::trickleDown(int i, dtNode* node) +{ + int child = (i*2)+1; + while (child < m_size) + { + if (((child+1) < m_size) && + (m_heap[child]->total > m_heap[child+1]->total)) + { + child++; + } + m_heap[i] = m_heap[child]; + i = child; + child = (i*2)+1; + } + bubbleUp(i, node); +} |