aboutsummaryrefslogtreecommitdiff
path: root/dep/SFMT/SFMT.h
diff options
context:
space:
mode:
authorsilinoron <none@none>2010-08-19 16:13:10 -0700
committersilinoron <none@none>2010-08-19 16:13:10 -0700
commitac59ff802b40f7bfd6b9a774a7cc2438fad99e2b (patch)
treeb50e32d86c27565b604c0b26331d7a913cc0db52 /dep/SFMT/SFMT.h
parent21cf500cb1aae38772ff7b3b979fb5ab0a94c119 (diff)
Switch to using SIMD-oriented Fast Mersenne Twister for random number generation.
In testing, reduced random number generation time by a factor of 8-10. Drops support for processors older than Pentium 4. Drop Mersenne Twister library; use a C++ SFMT library. --HG-- branch : trunk
Diffstat (limited to 'dep/SFMT/SFMT.h')
-rw-r--r--dep/SFMT/SFMT.h421
1 files changed, 286 insertions, 135 deletions
diff --git a/dep/SFMT/SFMT.h b/dep/SFMT/SFMT.h
index 7c8b35e9e95..03a7e853316 100644
--- a/dep/SFMT/SFMT.h
+++ b/dep/SFMT/SFMT.h
@@ -1,157 +1,308 @@
-/**
- * @file SFMT.h
- *
- * @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom
- * number generator
- *
- * @author Mutsuo Saito (Hiroshima University)
- * @author Makoto Matsumoto (Hiroshima University)
- *
- * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
- * University. All rights reserved.
- *
- * The new BSD License is applied to this software.
- * see LICENSE.txt
- *
- * @note We assume that your system has inttypes.h. If your system
- * doesn't have inttypes.h, you have to typedef uint32_t and uint64_t,
- * and you have to define PRIu64 and PRIx64 in this file as follows:
- * @verbatim
- typedef unsigned int uint32_t
- typedef unsigned long long uint64_t
- #define PRIu64 "llu"
- #define PRIx64 "llx"
-@endverbatim
- * uint32_t must be exactly 32-bit unsigned integer type (no more, no
- * less), and uint64_t must be exactly 64-bit unsigned integer type.
- * PRIu64 and PRIx64 are used for printf function to print 64-bit
- * unsigned int and 64-bit unsigned int in hexadecimal format.
+/*
+ * Copyright notice
+ * ================
+ * GNU General Public License http://www.gnu.org/licenses/gpl.html
+ * This C++ implementation of SFMT contains parts of the original C code
+ * which was published under the following BSD license, which is therefore
+ * in effect in addition to the GNU General Public License.
+ * Copyright (c) 2006, 2007 by Mutsuo Saito, Makoto Matsumoto and Hiroshima University.
+ * Copyright (c) 2008 by Agner Fog.
+ * Copyright (c) 2010 Trinity Core
+ *
+ * BSD License:
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * > Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * > Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ * > Neither the name of the Hiroshima University nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SFMT_H
#define SFMT_H
-#include <stdio.h>
-
-#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
- #include <inttypes.h>
-#elif defined(_MSC_VER) || defined(__BORLANDC__)
- typedef unsigned int uint32_t;
- typedef unsigned __int64 uint64_t;
- #define inline __inline
-#else
- #include <inttypes.h>
- #if defined(__GNUC__)
- #define inline __inline__
- #endif
-#endif
+#include <emmintrin.h> // Define SSE2 intrinsics
+#include "randomc.h" // Define integer types etc
+#include <time.h>
-#ifndef PRIu64
- #if defined(_MSC_VER) || defined(__BORLANDC__)
- #define PRIu64 "I64u"
- #define PRIx64 "I64x"
- #else
- #define PRIu64 "llu"
- #define PRIx64 "llx"
- #endif
-#endif
+// Choose one of the possible Mersenne exponents.
+// Higher values give longer cycle length and use more memory:
+//#define MEXP 607
+//#define MEXP 1279
+//#define MEXP 2281
+//#define MEXP 4253
+ #define MEXP 11213
+//#define MEXP 19937
+//#define MEXP 44497
-#if defined(__GNUC__)
-#define ALWAYSINLINE __attribute__((always_inline))
-#else
-#define ALWAYSINLINE
-#endif
+// Define constants for the selected Mersenne exponent:
+#if MEXP == 44497
+#define SFMT_N 348 // Size of state vector
+#define SFMT_M 330 // Position of intermediate feedback
+#define SFMT_SL1 5 // Left shift of W[N-1], 32-bit words
+#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
+#define SFMT_SR1 9 // Right shift of W[M], 32-bit words
+#define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words
+#define SFMT_MASK 0xeffffffb,0xdfbebfff,0xbfbf7bef,0x9ffd7bff // AND mask
+#define SFMT_PARITY 1,0,0xa3ac4000,0xecc1327a // Period certification vector
+
+#elif MEXP == 19937
+#define SFMT_N 156 // Size of state vector
+#define SFMT_M 122 // Position of intermediate feedback
+#define SFMT_SL1 18 // Left shift of W[N-1], 32-bit words
+#define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words
+#define SFMT_SR1 11 // Right shift of W[M], 32-bit words
+#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
+#define SFMT_MASK 0xdfffffef,0xddfecb7f,0xbffaffff,0xbffffff6 // AND mask
+#define SFMT_PARITY 1,0,0,0x13c9e684 // Period certification vector
+
+#elif MEXP == 11213
+#define SFMT_N 88 // Size of state vector
+#define SFMT_M 68 // Position of intermediate feedback
+#define SFMT_SL1 14 // Left shift of W[N-1], 32-bit words
+#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
+#define SFMT_SR1 7 // Right shift of W[M], 32-bit words
+#define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words
+#define SFMT_MASK 0xeffff7fb,0xffffffef,0xdfdfbfff,0x7fffdbfd // AND mask
+#define SFMT_PARITY 1,0,0xe8148000,0xd0c7afa3 // Period certification vector
+
+#elif MEXP == 4253
+#define SFMT_N 34 // Size of state vector
+#define SFMT_M 17 // Position of intermediate feedback
+#define SFMT_SL1 20 // Left shift of W[N-1], 32-bit words
+#define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words
+#define SFMT_SR1 7 // Right shift of W[M], 32-bit words
+#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
+#define SFMT_MASK 0x9f7bffff, 0x9fffff5f, 0x3efffffb, 0xfffff7bb // AND mask
+#define SFMT_PARITY 0xa8000001, 0xaf5390a3, 0xb740b3f8, 0x6c11486d // Period certification vector
+
+#elif MEXP == 2281
+#define SFMT_N 18 // Size of state vector
+#define SFMT_M 12 // Position of intermediate feedback
+#define SFMT_SL1 19 // Left shift of W[N-1], 32-bit words
+#define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words
+#define SFMT_SR1 5 // Right shift of W[M], 32-bit words
+#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
+#define SFMT_MASK 0xbff7ffbf, 0xfdfffffe, 0xf7ffef7f, 0xf2f7cbbf // AND mask
+#define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x41dfa600 // Period certification vector
+
+#elif MEXP == 1279
+#define SFMT_N 10 // Size of state vector
+#define SFMT_M 7 // Position of intermediate feedback
+#define SFMT_SL1 14 // Left shift of W[N-1], 32-bit words
+#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
+#define SFMT_SR1 5 // Right shift of W[M], 32-bit words
+#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words
+#define SFMT_MASK 0xf7fefffd, 0x7fefcfff, 0xaff3ef3f, 0xb5ffff7f // AND mask
+#define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x20000000 // Period certification vector
-#if defined(_MSC_VER)
- #if _MSC_VER >= 1200
- #define PRE_ALWAYS __forceinline
- #else
- #define PRE_ALWAYS inline
- #endif
-#else
- #define PRE_ALWAYS inline
+#elif MEXP == 607
+#define SFMT_N 5 // Size of state vector
+#define SFMT_M 2 // Position of intermediate feedback
+#define SFMT_SL1 15 // Left shift of W[N-1], 32-bit words
+#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words
+#define SFMT_SR1 13 // Right shift of W[M], 32-bit words
+#define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words
+#define SFMT_MASK 0xfdff37ff, 0xef7f3f7d, 0xff777b7d, 0x7ff7fb2f // AND mask
+#define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x5986f054 // Period certification vector
#endif
-uint32_t gen_rand32(void);
-uint64_t gen_rand64(void);
-void fill_array32(uint32_t *array, int size);
-void fill_array64(uint64_t *array, int size);
-void init_gen_rand(uint32_t seed);
-void init_by_array(uint32_t *init_key, int key_length);
-const char *get_idstring(void);
-int get_min_array_size32(void);
-int get_min_array_size64(void);
-
-/* These real versions are due to Isaku Wada */
-/** generates a random number on [0,1]-real-interval */
-inline static double to_real1(uint32_t v)
-{
- return v * (1.0/4294967295.0);
- /* divided by 2^32-1 */
+// Functions used by SFMTRand::RandomInitByArray
+static uint32_t func1(uint32_t x) {
+ return (x ^ (x >> 27)) * 1664525U;
}
-/** generates a random number on [0,1]-real-interval */
-inline static double genrand_real1(void)
-{
- return to_real1(gen_rand32());
+static uint32_t func2(uint32_t x) {
+ return (x ^ (x >> 27)) * 1566083941U;
}
-/** generates a random number on [0,1)-real-interval */
-inline static double to_real2(uint32_t v)
-{
- return v * (1.0/4294967296.0);
- /* divided by 2^32 */
+// Subfunction for the sfmt algorithm
+static inline __m128i sfmt_recursion(__m128i const &a, __m128i const &b,
+__m128i const &c, __m128i const &d, __m128i const &mask) {
+ __m128i a1, b1, c1, d1, z1, z2;
+ b1 = _mm_srli_epi32(b, SFMT_SR1);
+ a1 = _mm_slli_si128(a, SFMT_SL2);
+ c1 = _mm_srli_si128(c, SFMT_SR2);
+ d1 = _mm_slli_epi32(d, SFMT_SL1);
+ b1 = _mm_and_si128(b1, mask);
+ z1 = _mm_xor_si128(a, a1);
+ z2 = _mm_xor_si128(b1, d1);
+ z1 = _mm_xor_si128(z1, c1);
+ z2 = _mm_xor_si128(z1, z2);
+ return z2;
}
-/** generates a random number on [0,1)-real-interval */
-inline static double genrand_real2(void)
-{
- return to_real2(gen_rand32());
-}
+// Class for SFMT generator
+class SFMTRand { // Encapsulate random number generator
+public:
+ SFMTRand() { LastInterval = 0; RandomInit((int)(time(0))); }
-/** generates a random number on (0,1)-real-interval */
-inline static double to_real3(uint32_t v)
-{
- return (((double)v) + 0.5)*(1.0/4294967296.0);
- /* divided by 2^32 */
-}
+ void RandomInit(int seed) // Re-seed
+ {
+ // Re-seed
+ uint32_t i; // Loop counter
+ uint32_t y = seed; // Temporary
+ uint32_t statesize = SFMT_N*4; // Size of state vector
-/** generates a random number on (0,1)-real-interval */
-inline static double genrand_real3(void)
-{
- return to_real3(gen_rand32());
-}
-/** These real versions are due to Isaku Wada */
+ // Fill state vector with random numbers from seed
+ ((uint32_t*)state)[0] = y;
+ const uint32_t factor = 1812433253U;// Multiplication factor
-/** generates a random number on [0,1) with 53-bit resolution*/
-inline static double to_res53(uint64_t v)
-{
- return v * (1.0/18446744073709551616.0L);
-}
+ for (i = 1; i < statesize; i++) {
+ y = factor * (y ^ (y >> 30)) + i;
+ ((uint32_t*)state)[i] = y;
+ }
-/** generates a random number on [0,1) with 53-bit resolution from two
- * 32 bit integers */
-inline static double to_res53_mix(uint32_t x, uint32_t y)
-{
- return to_res53(x | ((uint64_t)y << 32));
-}
+ // Further initialization and period certification
+ Init2();
+ }
-/** generates a random number on [0,1) with 53-bit resolution
- */
-inline static double genrand_res53(void)
-{
- return to_res53(gen_rand64());
-}
+ int32_t IRandom(int32_t min, int32_t max) // Output random integer
+ {
+ // Output random integer in the interval min <= x <= max
+ // Slightly inaccurate if (max-min+1) is not a power of 2
+ if (max <= min) {
+ if (max == min) return min; else return 0x80000000;
+ }
+ // Assume 64 bit integers supported. Use multiply and shift method
+ uint32_t interval; // Length of interval
+ uint64_t longran; // Random bits * interval
+ uint32_t iran; // Longran / 2^32
-/** generates a random number on [0,1) with 53-bit resolution
- using 32bit integer.
- */
-inline static double genrand_res53_mix(void)
-{
- uint32_t x, y;
-
- x = gen_rand32();
- y = gen_rand32();
- return to_res53_mix(x, y);
-}
-#endif
+ interval = (uint32_t)(max - min + 1);
+ longran = (uint64_t)BRandom() * interval;
+ iran = (uint32_t)(longran >> 32);
+ // Convert back to signed and return result
+ return (int32_t)iran + min;
+ }
+
+ uint32_t URandom(uint32_t min, uint32_t max)
+ {
+ // Output random integer in the interval min <= x <= max
+ // Slightly inaccurate if (max-min+1) is not a power of 2
+ if (max <= min) {
+ if (max == min) return min; else return 0;
+ }
+ // Assume 64 bit integers supported. Use multiply and shift method
+ uint32_t interval; // Length of interval
+ uint64_t longran; // Random bits * interval
+ uint32_t iran; // Longran / 2^32
+
+ interval = (uint32_t)(max - min + 1);
+ longran = (uint64_t)BRandom() * interval;
+ iran = (uint32_t)(longran >> 32);
+ // Convert back to signed and return result
+ return iran + min;
+ }
+
+ double Random() // Output random floating point number
+ {
+ // Output random floating point number
+ if (ix >= SFMT_N*4-1) {
+ // Make sure we have at least two 32-bit numbers
+ Generate();
+ }
+ uint64_t r = *(uint64_t*)((uint32_t*)state+ix);
+ ix += 2;
+ // 52 bits resolution for compatibility with assembly version:
+ return (int64_t)(r >> 12) * (1./(67108864.0*67108864.0));
+ }
+
+ uint32_t BRandom() // Output random bits
+ {
+ // Output 32 random bits
+ uint32_t y;
+
+ if (ix >= SFMT_N*4) {
+ Generate();
+ }
+ y = ((uint32_t*)state)[ix++];
+ return y;
+ }
+private:
+ void Init2() // Various initializations and period certification
+ {
+ // Various initializations and period certification
+ uint32_t i, j, temp;
+
+ // Initialize mask
+ static const uint32_t maskinit[4] = {SFMT_MASK};
+ mask = _mm_loadu_si128((__m128i*)maskinit);
+
+ // Period certification
+ // Define period certification vector
+ static const uint32_t parityvec[4] = {SFMT_PARITY};
+
+ // Check if parityvec & state[0] has odd parity
+ temp = 0;
+ for (i = 0; i < 4; i++)
+ temp ^= parityvec[i] & ((uint32_t*)state)[i];
+
+ for (i = 16; i > 0; i >>= 1) temp ^= temp >> i;
+ if (!(temp & 1)) {
+ // parity is even. Certification failed
+ // Find a nonzero bit in period certification vector
+ for (i = 0; i < 4; i++) {
+ if (parityvec[i]) {
+ for (j = 1; j; j <<= 1) {
+ if (parityvec[i] & j) {
+ // Flip the corresponding bit in state[0] to change parity
+ ((uint32_t*)state)[i] ^= j;
+ // Done. Exit i and j loops
+ i = 5; break;
+ }
+ }
+ }
+ }
+ }
+
+ // Generate first random numbers and set ix = 0
+ Generate();
+ }
+
+ void Generate() // Fill state array with new random numbers
+ {
+ // Fill state array with new random numbers
+ int i;
+ __m128i r, r1, r2;
+
+ r1 = state[SFMT_N - 2];
+ r2 = state[SFMT_N - 1];
+ for (i = 0; i < SFMT_N - SFMT_M; i++) {
+ r = sfmt_recursion(state[i], state[i + SFMT_M], r1, r2, mask);
+ state[i] = r;
+ r1 = r2;
+ r2 = r;
+ }
+ for (; i < SFMT_N; i++) {
+ r = sfmt_recursion(state[i], state[i + SFMT_M - SFMT_N], r1, r2, mask);
+ state[i] = r;
+ r1 = r2;
+ r2 = r;
+ }
+ ix = 0;
+ }
+
+ uint32_t ix; // Index into state array
+ uint32_t LastInterval; // Last interval length for IRandom
+ uint32_t RLimit; // Rejection limit used by IRandom
+ __m128i mask; // AND mask
+ __m128i state[SFMT_N]; // State vector for SFMT generator
+};
+
+#endif // SFMT_H