diff options
Diffstat (limited to 'dep/SFMT/SFMT.h')
-rw-r--r-- | dep/SFMT/SFMT.h | 421 |
1 files changed, 286 insertions, 135 deletions
diff --git a/dep/SFMT/SFMT.h b/dep/SFMT/SFMT.h index 7c8b35e9e95..03a7e853316 100644 --- a/dep/SFMT/SFMT.h +++ b/dep/SFMT/SFMT.h @@ -1,157 +1,308 @@ -/** - * @file SFMT.h - * - * @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom - * number generator - * - * @author Mutsuo Saito (Hiroshima University) - * @author Makoto Matsumoto (Hiroshima University) - * - * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima - * University. All rights reserved. - * - * The new BSD License is applied to this software. - * see LICENSE.txt - * - * @note We assume that your system has inttypes.h. If your system - * doesn't have inttypes.h, you have to typedef uint32_t and uint64_t, - * and you have to define PRIu64 and PRIx64 in this file as follows: - * @verbatim - typedef unsigned int uint32_t - typedef unsigned long long uint64_t - #define PRIu64 "llu" - #define PRIx64 "llx" -@endverbatim - * uint32_t must be exactly 32-bit unsigned integer type (no more, no - * less), and uint64_t must be exactly 64-bit unsigned integer type. - * PRIu64 and PRIx64 are used for printf function to print 64-bit - * unsigned int and 64-bit unsigned int in hexadecimal format. +/* + * Copyright notice + * ================ + * GNU General Public License http://www.gnu.org/licenses/gpl.html + * This C++ implementation of SFMT contains parts of the original C code + * which was published under the following BSD license, which is therefore + * in effect in addition to the GNU General Public License. + * Copyright (c) 2006, 2007 by Mutsuo Saito, Makoto Matsumoto and Hiroshima University. + * Copyright (c) 2008 by Agner Fog. + * Copyright (c) 2010 Trinity Core + * + * BSD License: + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * > Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * > Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * > Neither the name of the Hiroshima University nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef SFMT_H #define SFMT_H -#include <stdio.h> - -#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) - #include <inttypes.h> -#elif defined(_MSC_VER) || defined(__BORLANDC__) - typedef unsigned int uint32_t; - typedef unsigned __int64 uint64_t; - #define inline __inline -#else - #include <inttypes.h> - #if defined(__GNUC__) - #define inline __inline__ - #endif -#endif +#include <emmintrin.h> // Define SSE2 intrinsics +#include "randomc.h" // Define integer types etc +#include <time.h> -#ifndef PRIu64 - #if defined(_MSC_VER) || defined(__BORLANDC__) - #define PRIu64 "I64u" - #define PRIx64 "I64x" - #else - #define PRIu64 "llu" - #define PRIx64 "llx" - #endif -#endif +// Choose one of the possible Mersenne exponents. +// Higher values give longer cycle length and use more memory: +//#define MEXP 607 +//#define MEXP 1279 +//#define MEXP 2281 +//#define MEXP 4253 + #define MEXP 11213 +//#define MEXP 19937 +//#define MEXP 44497 -#if defined(__GNUC__) -#define ALWAYSINLINE __attribute__((always_inline)) -#else -#define ALWAYSINLINE -#endif +// Define constants for the selected Mersenne exponent: +#if MEXP == 44497 +#define SFMT_N 348 // Size of state vector +#define SFMT_M 330 // Position of intermediate feedback +#define SFMT_SL1 5 // Left shift of W[N-1], 32-bit words +#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words +#define SFMT_SR1 9 // Right shift of W[M], 32-bit words +#define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words +#define SFMT_MASK 0xeffffffb,0xdfbebfff,0xbfbf7bef,0x9ffd7bff // AND mask +#define SFMT_PARITY 1,0,0xa3ac4000,0xecc1327a // Period certification vector + +#elif MEXP == 19937 +#define SFMT_N 156 // Size of state vector +#define SFMT_M 122 // Position of intermediate feedback +#define SFMT_SL1 18 // Left shift of W[N-1], 32-bit words +#define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words +#define SFMT_SR1 11 // Right shift of W[M], 32-bit words +#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words +#define SFMT_MASK 0xdfffffef,0xddfecb7f,0xbffaffff,0xbffffff6 // AND mask +#define SFMT_PARITY 1,0,0,0x13c9e684 // Period certification vector + +#elif MEXP == 11213 +#define SFMT_N 88 // Size of state vector +#define SFMT_M 68 // Position of intermediate feedback +#define SFMT_SL1 14 // Left shift of W[N-1], 32-bit words +#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words +#define SFMT_SR1 7 // Right shift of W[M], 32-bit words +#define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words +#define SFMT_MASK 0xeffff7fb,0xffffffef,0xdfdfbfff,0x7fffdbfd // AND mask +#define SFMT_PARITY 1,0,0xe8148000,0xd0c7afa3 // Period certification vector + +#elif MEXP == 4253 +#define SFMT_N 34 // Size of state vector +#define SFMT_M 17 // Position of intermediate feedback +#define SFMT_SL1 20 // Left shift of W[N-1], 32-bit words +#define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words +#define SFMT_SR1 7 // Right shift of W[M], 32-bit words +#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words +#define SFMT_MASK 0x9f7bffff, 0x9fffff5f, 0x3efffffb, 0xfffff7bb // AND mask +#define SFMT_PARITY 0xa8000001, 0xaf5390a3, 0xb740b3f8, 0x6c11486d // Period certification vector + +#elif MEXP == 2281 +#define SFMT_N 18 // Size of state vector +#define SFMT_M 12 // Position of intermediate feedback +#define SFMT_SL1 19 // Left shift of W[N-1], 32-bit words +#define SFMT_SL2 1 // Left shift of W[0], *8, 128-bit words +#define SFMT_SR1 5 // Right shift of W[M], 32-bit words +#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words +#define SFMT_MASK 0xbff7ffbf, 0xfdfffffe, 0xf7ffef7f, 0xf2f7cbbf // AND mask +#define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x41dfa600 // Period certification vector + +#elif MEXP == 1279 +#define SFMT_N 10 // Size of state vector +#define SFMT_M 7 // Position of intermediate feedback +#define SFMT_SL1 14 // Left shift of W[N-1], 32-bit words +#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words +#define SFMT_SR1 5 // Right shift of W[M], 32-bit words +#define SFMT_SR2 1 // Right shift of W[N-2], *8, 128-bit words +#define SFMT_MASK 0xf7fefffd, 0x7fefcfff, 0xaff3ef3f, 0xb5ffff7f // AND mask +#define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x20000000 // Period certification vector -#if defined(_MSC_VER) - #if _MSC_VER >= 1200 - #define PRE_ALWAYS __forceinline - #else - #define PRE_ALWAYS inline - #endif -#else - #define PRE_ALWAYS inline +#elif MEXP == 607 +#define SFMT_N 5 // Size of state vector +#define SFMT_M 2 // Position of intermediate feedback +#define SFMT_SL1 15 // Left shift of W[N-1], 32-bit words +#define SFMT_SL2 3 // Left shift of W[0], *8, 128-bit words +#define SFMT_SR1 13 // Right shift of W[M], 32-bit words +#define SFMT_SR2 3 // Right shift of W[N-2], *8, 128-bit words +#define SFMT_MASK 0xfdff37ff, 0xef7f3f7d, 0xff777b7d, 0x7ff7fb2f // AND mask +#define SFMT_PARITY 0x00000001, 0x00000000, 0x00000000, 0x5986f054 // Period certification vector #endif -uint32_t gen_rand32(void); -uint64_t gen_rand64(void); -void fill_array32(uint32_t *array, int size); -void fill_array64(uint64_t *array, int size); -void init_gen_rand(uint32_t seed); -void init_by_array(uint32_t *init_key, int key_length); -const char *get_idstring(void); -int get_min_array_size32(void); -int get_min_array_size64(void); - -/* These real versions are due to Isaku Wada */ -/** generates a random number on [0,1]-real-interval */ -inline static double to_real1(uint32_t v) -{ - return v * (1.0/4294967295.0); - /* divided by 2^32-1 */ +// Functions used by SFMTRand::RandomInitByArray +static uint32_t func1(uint32_t x) { + return (x ^ (x >> 27)) * 1664525U; } -/** generates a random number on [0,1]-real-interval */ -inline static double genrand_real1(void) -{ - return to_real1(gen_rand32()); +static uint32_t func2(uint32_t x) { + return (x ^ (x >> 27)) * 1566083941U; } -/** generates a random number on [0,1)-real-interval */ -inline static double to_real2(uint32_t v) -{ - return v * (1.0/4294967296.0); - /* divided by 2^32 */ +// Subfunction for the sfmt algorithm +static inline __m128i sfmt_recursion(__m128i const &a, __m128i const &b, +__m128i const &c, __m128i const &d, __m128i const &mask) { + __m128i a1, b1, c1, d1, z1, z2; + b1 = _mm_srli_epi32(b, SFMT_SR1); + a1 = _mm_slli_si128(a, SFMT_SL2); + c1 = _mm_srli_si128(c, SFMT_SR2); + d1 = _mm_slli_epi32(d, SFMT_SL1); + b1 = _mm_and_si128(b1, mask); + z1 = _mm_xor_si128(a, a1); + z2 = _mm_xor_si128(b1, d1); + z1 = _mm_xor_si128(z1, c1); + z2 = _mm_xor_si128(z1, z2); + return z2; } -/** generates a random number on [0,1)-real-interval */ -inline static double genrand_real2(void) -{ - return to_real2(gen_rand32()); -} +// Class for SFMT generator +class SFMTRand { // Encapsulate random number generator +public: + SFMTRand() { LastInterval = 0; RandomInit((int)(time(0))); } -/** generates a random number on (0,1)-real-interval */ -inline static double to_real3(uint32_t v) -{ - return (((double)v) + 0.5)*(1.0/4294967296.0); - /* divided by 2^32 */ -} + void RandomInit(int seed) // Re-seed + { + // Re-seed + uint32_t i; // Loop counter + uint32_t y = seed; // Temporary + uint32_t statesize = SFMT_N*4; // Size of state vector -/** generates a random number on (0,1)-real-interval */ -inline static double genrand_real3(void) -{ - return to_real3(gen_rand32()); -} -/** These real versions are due to Isaku Wada */ + // Fill state vector with random numbers from seed + ((uint32_t*)state)[0] = y; + const uint32_t factor = 1812433253U;// Multiplication factor -/** generates a random number on [0,1) with 53-bit resolution*/ -inline static double to_res53(uint64_t v) -{ - return v * (1.0/18446744073709551616.0L); -} + for (i = 1; i < statesize; i++) { + y = factor * (y ^ (y >> 30)) + i; + ((uint32_t*)state)[i] = y; + } -/** generates a random number on [0,1) with 53-bit resolution from two - * 32 bit integers */ -inline static double to_res53_mix(uint32_t x, uint32_t y) -{ - return to_res53(x | ((uint64_t)y << 32)); -} + // Further initialization and period certification + Init2(); + } -/** generates a random number on [0,1) with 53-bit resolution - */ -inline static double genrand_res53(void) -{ - return to_res53(gen_rand64()); -} + int32_t IRandom(int32_t min, int32_t max) // Output random integer + { + // Output random integer in the interval min <= x <= max + // Slightly inaccurate if (max-min+1) is not a power of 2 + if (max <= min) { + if (max == min) return min; else return 0x80000000; + } + // Assume 64 bit integers supported. Use multiply and shift method + uint32_t interval; // Length of interval + uint64_t longran; // Random bits * interval + uint32_t iran; // Longran / 2^32 -/** generates a random number on [0,1) with 53-bit resolution - using 32bit integer. - */ -inline static double genrand_res53_mix(void) -{ - uint32_t x, y; - - x = gen_rand32(); - y = gen_rand32(); - return to_res53_mix(x, y); -} -#endif + interval = (uint32_t)(max - min + 1); + longran = (uint64_t)BRandom() * interval; + iran = (uint32_t)(longran >> 32); + // Convert back to signed and return result + return (int32_t)iran + min; + } + + uint32_t URandom(uint32_t min, uint32_t max) + { + // Output random integer in the interval min <= x <= max + // Slightly inaccurate if (max-min+1) is not a power of 2 + if (max <= min) { + if (max == min) return min; else return 0; + } + // Assume 64 bit integers supported. Use multiply and shift method + uint32_t interval; // Length of interval + uint64_t longran; // Random bits * interval + uint32_t iran; // Longran / 2^32 + + interval = (uint32_t)(max - min + 1); + longran = (uint64_t)BRandom() * interval; + iran = (uint32_t)(longran >> 32); + // Convert back to signed and return result + return iran + min; + } + + double Random() // Output random floating point number + { + // Output random floating point number + if (ix >= SFMT_N*4-1) { + // Make sure we have at least two 32-bit numbers + Generate(); + } + uint64_t r = *(uint64_t*)((uint32_t*)state+ix); + ix += 2; + // 52 bits resolution for compatibility with assembly version: + return (int64_t)(r >> 12) * (1./(67108864.0*67108864.0)); + } + + uint32_t BRandom() // Output random bits + { + // Output 32 random bits + uint32_t y; + + if (ix >= SFMT_N*4) { + Generate(); + } + y = ((uint32_t*)state)[ix++]; + return y; + } +private: + void Init2() // Various initializations and period certification + { + // Various initializations and period certification + uint32_t i, j, temp; + + // Initialize mask + static const uint32_t maskinit[4] = {SFMT_MASK}; + mask = _mm_loadu_si128((__m128i*)maskinit); + + // Period certification + // Define period certification vector + static const uint32_t parityvec[4] = {SFMT_PARITY}; + + // Check if parityvec & state[0] has odd parity + temp = 0; + for (i = 0; i < 4; i++) + temp ^= parityvec[i] & ((uint32_t*)state)[i]; + + for (i = 16; i > 0; i >>= 1) temp ^= temp >> i; + if (!(temp & 1)) { + // parity is even. Certification failed + // Find a nonzero bit in period certification vector + for (i = 0; i < 4; i++) { + if (parityvec[i]) { + for (j = 1; j; j <<= 1) { + if (parityvec[i] & j) { + // Flip the corresponding bit in state[0] to change parity + ((uint32_t*)state)[i] ^= j; + // Done. Exit i and j loops + i = 5; break; + } + } + } + } + } + + // Generate first random numbers and set ix = 0 + Generate(); + } + + void Generate() // Fill state array with new random numbers + { + // Fill state array with new random numbers + int i; + __m128i r, r1, r2; + + r1 = state[SFMT_N - 2]; + r2 = state[SFMT_N - 1]; + for (i = 0; i < SFMT_N - SFMT_M; i++) { + r = sfmt_recursion(state[i], state[i + SFMT_M], r1, r2, mask); + state[i] = r; + r1 = r2; + r2 = r; + } + for (; i < SFMT_N; i++) { + r = sfmt_recursion(state[i], state[i + SFMT_M - SFMT_N], r1, r2, mask); + state[i] = r; + r1 = r2; + r2 = r; + } + ix = 0; + } + + uint32_t ix; // Index into state array + uint32_t LastInterval; // Last interval length for IRandom + uint32_t RLimit; // Rejection limit used by IRandom + __m128i mask; // AND mask + __m128i state[SFMT_N]; // State vector for SFMT generator +}; + +#endif // SFMT_H |